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ABSTRACT 
In this study, we propose a novel application of the Support Vector Regression (SVR) 

method to model a task variable in the Task-Technology Fit (TTF) theory. The support 
vector approach learns a parsimonious regression model from the given data to avoid the 
data over-fitting problem. Founded on the theories of statistical learning, mathematical 
programming and functional analysis, SVR is shown to outperform the traditional multiple 
linear regression method from the perspective of regression accuracy. Using a bootstrap 
procedure, we design a mechanism to extract significant factors from the support vector 
approach.  
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1. Introduction 

Vapnik and his coworkers proposed a novel method called Support Vector Machine 
(SVM) to classify data (Vapnik, 1998). The support vector machine is founded on theories 
from (i) statistical learning; (ii) mathematical programming; and (iii) functional analysis. 
Recently SVM has been successfully applied to many real world problems such as the hand 
written digit recognition, speech recognition, bioinformatics, and etc. Because of the high 
performance, SVM is receiving the attention of many researchers in the field of science and 
engineering. 

In this study, we propose a novel application of SVM (Vapnik, 1995; Scholkopf et al., 
2002) in regression analysis to study information system adoption problems. Support 
Vector Regression (SVR) is shown to outperform the multiple regression method from the 
perspective of regression accuracy. Using a bootstrap procedure, we design a mechanism to 
derive significant factors that explain the adoption of mobile commerce in the insurance 
industry. Our findings from this support vector approach are different from those given by 
the traditional Multiple Linear Regression (MLR) method. However, it seems that the 
factors found from this support vector approach can explain the adoption decision better 
than the factors found from the traditional approach. 

This paper is organized as follows. In section 2, we introduce concepts of SVM and 
SVR, along with a bootstrap procedure to derive significant factors from a SVR model. 
Two F-like statistics will also be introduced to judge the significance level of a predictor 
variable in the regression model. SVR and MLR will both be applied to study a case of 
information system adoption using the Task-Technology Fit (TTF) theory. Comparison 
regarding regression accuracy and the resultant significant factors between both approaches 
is made in section 3. Finally, we conclude in section 4 with a few remarks regarding the 
implication of this research. 

2. Materials and Methods 

2.1 Support Vector Regression 

The accuracy of a learnt binary classification rule is usually measured by the 
expectation error of the rule on test data. In statistical learning theory this error, called the 
expected risk or actual risk, is shown in equation (1), 
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where x is a multi-dimensional predictor variable, y the corresponding target class, f(x) 
the predicted class from the learnt classifier f, and F(x,y) a joint distribution of x and y for 
drawing test data. In addition, let us assume that training data and test data are independently 
and identically drawn from the input-output space according to the distribution F(x,y). Many 
learning algorithms including Artificial Neural Networks (ANN) from machine learning and 
MLR from statistics implement the Empirical Risk Minimization (ERM) principle to learn 
the model. The empirical risk Remp[f] for a classifier f in equation (2) is given by the fitting 
error of f on the training data (xi, yi), i =1, …,l. 
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Using statistical learning theory, Vapnik (Vapnik 1995, 1998) proved a type of 
estimate on the actual risk as follows: 

ceVCConfidenfRfR emp +≤ ][][        (3) 

where VCConfidence is a property of the function family used to learn the model. 
Basically, the VCConfidence quantity goes up as more complex functions are allowed in 
the family. Algorithms using ERM do not consider complexity of the function family, so 
their actual risk is not minimized. As an ERM-based algorithm uses more complex function 
to model the training data and hence reduce the empirical risk, the VCConfidence may go 
up substantially so that the upper bound for the actual risk actually increases. On the other 
hand, a Structure Risk Minimization (SRM) based algorithm such as SVM tries to control 
both empirical risk and complexity of classifiers at the same time. Thus a trained SVM 
generally performs better on test data than ANN. The comparison between ERM and SRM 
is depicted in Figure 1, where the increasing curve is given by the VCConfidence term and 
the decreasing curse is given by the empirical risk. The sum of them bounds the actual risk. 

Bound on actual 

Bound on VC confidence

Empirical risk

h (VC dimension)

Figure 1: The bound on actual risk (Chin, 1999) 

The original binary classification theory of SVM was later extended to solve a 
regression problem (Vapnik 1998). In this case, we are given a set of training data (xi, yi), i 
=1, …,l, where xi is a multi-dimensional input vector and yi the corresponding real-valued 
target value. We would like to find a regression function that predicts well for the test data 
drawn from the same distribution as the training data. Vapnik introduced a -insensitive 
loss function (ILF) to measure the empirical error to reduce the number of support vectors. 

In other words, when the difference |)(| ii yxf −  between a predicted value and the target 
value is smaller than , it will not contribute to the total empirical error according to this 
ILF. Finding a classifier with the smallest bound on the right hand side of equation (3) is 
translated into a mathematical programming problem. For the -SVR problem, this is given 
by the following optimization problem: 
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Here C denotes a trade-off ratio between empirical errors (
*, ii ξξ ) and the model 

complexity controlled by 
2

w . The feature map φ  gives a nonlinear transformation from 

the input space to the feature space via a kernel function )()(),( ji
T

ji xxxxK φφ= . The 
optimization problem in (4) is further transformed into the following Wolf dual problem 
via the Lagrangian multipliers technique: 
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Here 
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1 αααααα === . After solving the Wolf dual 
problem for the optimizing multipliers, we get a regression function in the following 
formula. 
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Support vectors of a SVR model are defined to be those input vectors xi where 0≠iα

or 0* ≠iα . Because of the complimentary condition 0* =iiαα , these support vectors 
actually span the regression formula in equation (6), and all other input vectors contribute 
nothing to the regression function. Scholkopf et al. (1995) showed that the support vectors 
for a classification problem represent a small fraction of the original data set and support 
vectors from different kernels overlap with a high percentage. In this sense, a support 
vectors set is a stable characteristic of the data (Scholkopf et al., 1995). For the SVR case, 
using the Kuhn-Tucker theorem (Vapnik, 1995; Scholkopf et al., 2002) one can show that 
the predicted value at a support vector deviates from the given target with a distance 
greater than or equal to . In addition to the linear loss function in equation (4), a quadratic 

loss function such as 
2*2 )( ii ξξ +  has also been considered in SVR literature.  

A kernel function defines a nonlinear mapping from the input space to the feature 
space. With this nonlinear mapping facility, SVR has powerful regression capacity to 
model many real world applications. Because of the kernel, SVR can easily carry out the 
inner product operation of two feature vectors without explicitly using the feature map. 
Kernels commonly used in the SVR literature include the following functions. 
1. Polynomial kernel: 
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2. Radial basis function kernel: 

)exp(),(
2
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3. Sigmoid kernel: 
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T
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Most researchers use the Radial Basis Function (RBF) kernel because its function can 
substitute other kernel functions (Keerthi and Lin, 2003; Lin and Lin, 2003). In this 
research, we adopt polynomial function and RBF as kernel for the SVR approach. 
Hyper-parameters d,,θγ  for the kernels, and C that decides the trade-off between 
regression accuracy and model complexity, will specify the setting for a SVR approach 
completely. 

2.2 Extracting significant factors from SVR 

Traditional MLR from statistics will not only give the regression coefficient but also 
the significance level of each predictor variable in the form of p-value. In this approach, it 
is assumed that the true output is corrupted by a random noise :

εβββ ++++= kk xxxf 110)(    (10) 

The significance level of a predictor variable xi is derived from a hypothesis testing with 
the following null hypothesis. 
      0:0 =iH β        (11) 

Under some normality assumption on the noise, it is shown that the above hypothesis 
testing can be examined using a t-test (Devore, 2004). 

2.2.1 Bootstrap for SVR 

SVR is commonly classified as a nonparametric approach in statistics (Green and 
Silverman, 1994; Sprent and Smeeton, 2002; Hastie et al., 2003) and very few literatures 
about testing the significance of predictor variables are available for this approach. 
Ait-Sahalia et al. (2001) used a Nadaraya-Watson kernel regression estimator to discuss the 
significant factors in a kernel regression problem. Green and Silverman (1994) discussed 
the model fit problem for a smoothing regression problem, i.e. a roughness penalty was 
charged to the prediction function in addition to the prediction accuracy. However, these 
two types of regression are different from the support vector regression. The kernel 
regression approach is more like a local modeling technique for regression analysis, while 
the smoothing regression approach is closely related to splines based regression. 

As indicated above, significant factors extraction in MLR is resolved by testing the 
null hypothesis in equation (11). This problem can also be resolved by using the Sum of 
Squared Errors (SSE) approach as follows. Let SSEf denote the SSE of the full model with 
all predictor variables in regression modeling and SSEr the SSE of the reduced model with 
one predictor variable removed in regression modeling. If the left out variable is significant 
in the full model, we expect to see that the difference (SSEr – SSEf) is substantially large. 
For MLR, this is translated into the following f-statistic: 
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Under the normality assumption on the noise, the random variable f has an F 
distribution of degree of freedom 1 in the numerator and degree of freedom (l – k - 1) in the 
denominator. Here l denotes the number of cases (training examples) and k the number of 
predictor variables. 

For the SVR approach, we would like to use a similar idea to test the significance 
level of a predictor variable. However, since the distribution of the test statistic in equation 
(12) is not known for the support vector approach, we need to look for help from 
distribution free statistics. Bootstrap technique (Hastie et al. 2001, Devore 2004) is a 
common technique used in distribution free problems. Indeed, Friedman (2003) suggested a 
bootstrap procedure for testing the significance level of variables in a general regression 
setting. We will follow his approach for extracting significant factors in the SVR approach. 
Thus, a null hypothesis is posited as follows: 

H0: the reduced model provides the same explanatory power as the full model 
In order to test this hypothesis, a statistic t similar to (12) will be formulated and we 

assume that smaller values of t represent greater likelihood of H0. That is, SSE of the 
reduced model does not deviate too much from SSE of the full mode when H0 is likely to 
be true. We now produce P data sets by randomly permuting the output values of the 

original data set, i.e. we bootstrap P data sets such as },,1),,{( )( liyx ii =π  from the 

original data set },,1),,{( liyx ii =  with )(iπ  being any permutation function on the set 
of integers {1,…,l}. For each of these data sets, a t statistic will be calculated and if the t 
value from the original data set is greater than or equal to the 1 -  quantile of {ti, i 
=1, …,P}, then we may reject H0 with significance level . In other words, we will say that 
the left out variable is significant with level  in the SVR model. This is valid for any 
number of random permutations P, but the power increases with increasing P (Friedman 
2003). The test statistic we will use for the support vector approach is listed below: 

f
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2.2.2 Effective number of parameters

Using the bootstrap procedure, we need not worry about the degree of freedom 
problem since we are comparing the order of test statistics from the same formula. 
Therefore we leave out the degree of freedom term in equation (13). On the other hand, one 
may ask if a simple formula like the F-statistic exists for the SVR approach. Then, this will 
involve the degree of freedom problem for the SSE random variables. A common approach 
to define this degree of freedom is to subtract the number of parameters from the number of 
total cases. Hastie et al. (2001) provides a formula to compute the effective number of 
parameters for general regression modeling. 

Let us stack the given targets y1,…,yl into a vector y , and similarly for the predicted 

targets into a vector 
Py . Now suppose we can write a fitting formula relating these targets 

as ySy P ∗= , where S is an l by l matrix dependent on the input vectors xi but not on the 
targets yi. Then the effective number of parameters is defined as d(S) = trace(S), the sum of 
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the diagonal elements of S. Now for the SVR using quadratic -insensitive loss function 
and  is set to 0, we get the so-called ridge regression (Cristianini et al. 2000): 
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For this ridge regression, it can be shown that ySy P ∗=  holds with 

S = K(K + I)-1       (15) 

Here K is the kernel matrix ),( jiij xxKK =  and the negative one exponent denotes 
the inverse matrix of (K + I). The  in equation (14) is equivalent to 1/C for the C in 
equation (4). Therefore, we can calculate the effective number of parameters for this 
particular SVR. 

2.2.3 F-like test statistics 

For a ridge regression, we introduce two F-like statistics to extract significant factors 
from the SVR approach. These two statistics use different formulae to interpret the degree 
of freedom for SSE. 

Test statistic 1: The full model has k parameters and the reduced model has k - 1 
parameters, where k is the number of predictor variables. In other words, one predictor 
variable is counted as one parameter in SVR. Then, the first test statistic is given by 
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And, the rejection region is ),1;(1 klFf −≥ α  where ),1;( klF −α  denotes the F
critical value with significance level .
Test statistic 2: The full model has 1ν  effective number of parameters and the reduced 
model has 2ν  effective number of parameters, where 1ν  and 2ν are computed as the 
trace of matrix in equation (15). The full model will use all predictor variables to 
compute the kernel matrix while the reduced model will use the reduced set of 
variables to compute this matrix. The test statistic is given by 
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And the rejection region is ),;( 1212 νννα −−≥ lFf . We will compute two types of 
kernel matrix by using the polynomial kernel and the RBF kernel in the experiment 
section. The kernel matrix K is an l x l positive definite matrix for both the full and 
reduced models with l equal to the number of cases. The matrix inversion in (15) is 
solved with a library from the IMSL Fortran library. 

2.2.4 Significant Factor Extraction 

In order to use a bootstrap procedure with the test statistic in equation (13) to extract 
significant factors from SVR, P = 100 data sets will be created from the original data set by 
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randomly permuting the output variables. The test statistics for these P data sets are 
computed, and so is the one for the original data set. We will set the significant level 
equal to 0.05 in this study. When the test statistic for the original data set is greater than or 
equal to 95% of the P test statistics created earlier, we reject the null hypothesis and 
conclude that the left out variable is a significant factor. Test statistics f1 and f2 in 
equations (16) and (17) are also calculated for the original data set and compared to the 
respective F distribution in order to extract significant factors. We then compare the results 
for significant factors extraction from the bootstrap and the F- statistics approaches.  

3. Experiments and Results 

3.1 Data Preparation 

Data collected from study of Lee et al. (2006) is used to examine the performance of 
the SVR approach explained in the last section. We briefly introduce the data set in the 
following. 

Lee et al. (2006) conducted an empirical study of mobile commerce in insurance 
industry based on the Task-Technology Fit (TTF) model (Goodhue and Thompson, 1995). 
According to TTF, the existence of a fit among task, technology and the user promotes the 
willingness of the user to use the technology and the user’s work performance. In the case 
of mobile technology adoption in insurance industry, the particular TTF model is described 
in Figure 2. 

Tasks 

PDA 

Individual 
differences 

Task-technology fit of 
applying PDA in 
insurance tasks 

Task 
performance 

Figure 2: Task technology model for insurance industry (Lee et al., 2006) 

In order to compare the SVR approach with the traditional MLR approach, we will use 
the second part of the TTF model as the research model (Figure 3). The eight indicators of 
TTF play the role of predictor variables and the three task indicators are the outcome 
variables. The three major tasks for insurance agents are (i) recruitment of new insurances; 
(ii) post-contract customer services; and (iii) supply of other information and services. The 
eight TTF indicators are explained below. 
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Goodhue and Thompson (1995) developed eight factors to measure the fit between 
tasks and information technology. These indicators include 
1. Data Quality: 

a. Currency – The data meets the requirements of the task. 
b. Right data – to store the required data for task. 
c. Right level of detail – The stored data are correct with sufficient details.

Task-technology fit of applying 
PDA in insurance tasks 

1. Data quality 
2. Data locatability 
3. Authorization 
4. Timeliness 
5. Compatibility 
6. Systems reliability 
7. Ease of use/Training 
8. Relationship with users 

Assistance to 
insurance tasks 

1. Recruiting new 
contracts

2. Post-contract 
customer services 

3. Tax and legal 
information
services

Figure 3: Research model for comparison (Lee et al., 2006) 

2. Data Locatability: 
a. Locatability – The user can easily locate required data. 
b. Meaning – Each item of the data has clear definition and easy to use for users. 

3. Authorization: The users are properly authorized to download data relevant to the task 
from corporate databases. 

4. Production timeliness: The system can provide relevant information to the task in a 
timely manner. 

5. Compatibility: The data are consistent with each other when they come from two or 
more different sources. 

6. Systems reliability: The user can reliably depend on the system to complete the task 
without system problem and system breakdowns.

7. Ease of use/Training: It is easy to learn how to use the system and it is convenient to 
use the system to access data, including the ease of use of hardware and software, and 
easy to obtain relevant training. 

8. Relationship with users: 
a. IS understanding of business – The system fits the users’ daily requirements and 

corporate goals. 
b. IS interest and dedication – The data of the information system supports customers’ 

requirements. 
c. Responsiveness – The information system can supply the needed information 

whenever the users need help in performing their work. 
d. Consulting – The company provides good technical support to information systems 
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users. 
e. IS performance – The information system provides its users solution to their work 

requirements. 

3.1.1 Samples & Measurement Methodology 

In the study of Lee et al. (2006), 450 questionnaires are sent randomly and 274 are 
returned. Excluding incomplete and inconsistent questionnaires, there are 238 final useful 
samples. The questionnaire consists of questions related to the predictor and outcome 
variables in the regression problem. The measurement method is described as follows: 
User’s Task Performance 

The effect of PDA technology on the insurance agents’ performance is measured by 
the respondents’ self assessment of how useful adopting PDA technology it is to assist them 
in performing the three major types of insurance tasks. The user’s task performance is 
measured in a 5-point Likert scale. These task assessment indicators become the outcome 
variables in the three regression problems. 
PDA Task-Technology Fit 

A questionnaire is developed to assess the task-technology fit of PDA technology in 
the three major tasks of insurance agents based on the eight factors of task-technology fit 
model of Goodhue and Thompson (1995). The task-technology fit instrument uses a 5-point 
Likert scale. The descriptive statistics of these TTF indicators are shown in Table 1. These 
eight TTF indicators are the predictor variables in the three regression problems described 
above. 

3.1.2 Reliability and Validity  

Cronbach’s  were used to measure the reliability of research instrument. In practical 
application, the value of Cronbach’s  should exceed 0.5, preferably more than 0.7 
(Nunally, 1978). A Cronbach’s  higher than 0.7 is considered high reliability, while a 
value lower than 0.35 is deemed not reliable. The Cronbach’s  of our instrument ranges 
from 0.6347 to 0.9412, indicating a medium high to high reliability.  

To ensure content validity, the questionnaire design was based on well-established and 
validated instruments in the literature. In terms of construct validity, the factor loadings of 
the eight task-technology fit factors of the Goodhue and Thompson (1995) questionnaire 
were all above 0.5. In summary, both the content and construct validity of the research 
instrument have been achieved. 

Table 1: Descriptive statistics for TTF indicators 

Indicator Min value Max value Average Std. Dev.
TTF 1: Data quality 2 5 3.83 .59 
TTF 2: Data locatability 2 5 3.86 .60 
TTF 3: Authorization 2 5 4.11 .63 
TTF 4: Timeliness 2 5 3.88 .67 
TTF 5: Compatibility 2 5 3.69 .69 
TTF 6: System reliability 2 5 3.64 .70 
TTF 7: Easy of use/Training 2 5 3.65 .60 
TTF 8: Relationship with users 2 5 3.64 .59 
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3.2 Experimental results

3.2.1 Regression Accuracy

The first comparison between the traditional method and our support vector approach 
is to compare the regression accuracy. MLR is commonly used to derive a model when the 
output is continuous. We use the MLR as the traditional approach and compare its 
performance with the new support vector approach. 

We randomly partitioned the data set into a training set and a test set. A regression 
model was trained on the training set via the traditional approach or the support vector 
approach, and the model was validated on the test set. For the support vector approach, we 
adopted a quadratic polynomial kernel with = 0.125, d = 2, and C = 0.01. A linear 
insensitive loss function was used and the insensitive accuracy  was set to 0.01. We used 
LIBSVM (Chang and Lin, 2001) to implement the -SVR. Table 2 lists results from both 
MLR and SVR regression techniques. The rate column indicates the percentage of the 
training data in the original data set. Thus, the first row is the result for a randomly selected 
training set that accounts for 70% (167 cases) of the original data set (238 cases). The MSE 
(mean squared error) column measures averaged squared errors on the test set, and the 
correlation column indicates the correlation coefficient between the predicted values f(xi) 
and the given values yi on the test cases. One can see that MSE from SVR is smaller than 
that from MLR, and predicted values from SVR approach are more closely correlated to 
given targets than MLR approach. This shows that SVR fulfills its mission of prediction by 
controlling the bound on the actual risk well. 

Table 2: Comparison of generalization error for Task 1 regression 

Multiple regression Support vector regression 
Rate MSE Correlation MSE Correlation 
0.70 0.3096 0.5623 0.2696 0.6133 
0.75 0.4021 0.5066 0.3729 0.5654 
0.80 0.4059 0.4174 0.3363 0.4868 
0.85 0.4464 0.4448 0.4260 0.5279 
0.90 0.3987 0.4832 0.3695 0.5439 

3.2.2 Factor Extraction 

Table 3 lists the factor extraction information for regressing three major tasks with 
respect to eight TTF indicators by MLR. It can be seen that data quality is significant in the 
regression model for all three tasks, while compatibility and relationship with users factors 
are also significant with p-value < 0.05 for task 3. 
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Table 3: Multiple regression of tasks w.r.t. TTF 

 coefficients Task 1 Task 2 Task 3 
TTF 1: Data quality .474* .582* .540*

TTF 2: Data locatability .174 ..064 .105 
TTF 3: Authorization .020 .106 -.153 
TTF 4: Timeliness .115 ..18 .006 
TTF 5: Compatibility -.007 -.056 .267*

TTF 6: System reliability -.060 .004 .000 
TTF 7: Easy of use/Training ..055 .022 -.013 
TTF 8: Relationship with 
users

.112 .148 .248*

*: significant with p-value < 0.05 

Regarding the factor extraction problem with the SVR approach, we will use both 
bootstrap procedure and the two F-statistics proposed in section 2 to discover significant 
factors. For this study, we consider factors obtained with the bootstrap procedure are the 
correct ones for the SVR approach. In order to use the two F-statistics, we need to assume a 
quadratic loss function with equal to 0 for SVR, i.e. a Ridge regression. Both the 
polynomial kernel and RBF kernel will be used to calculate SSE of the full model and the 
reduced model. Hyper-parameters d,,θγ and C in equations (4), (7), (8) and (9) are 
commonly determined via a cross validation method. The open source software LIBSVM 
(Chang and Lin, 2001) provides a cross validation option when it is used to train a model. 
Hyper-parameters giving the highest cross validation accuracy are used to compute the SSE 
for the SVR approach. No matter which predictor variable is removed, we use the same 
hyper-parameters found for the full model to compute the SSE of the reduced model. 

Tables 4 and 5 show results for the Task 1 regression problem using the polynomial 
and RBF kernels respectively. An ‘X’ mark in the bootstrap column indicates that the test 
statistic (13) for the original data set using the corresponding row factor as the left out 
variable for the reduced model is greater than or equal to 95% of the test statistics obtained 
on the P=100 randomly permuted data sets. This bootstrap procedure is considered the 
standard way to extract factors for SVR. In certain experiments where the focal test 
statistic is around 94%~96% of the test statistics from permuted data sets, we redo the 
experiments with P=200 to increase the power of the bootstrap approach. For the 
polynomial kernel, both test statistics in (16) and (17) extracted the same significant factor 
as the bootstrap method. However, for the RBF kernel test statistic f2 extracted the same 
factors as the bootstrap method, and the f1 statistic missed one significant factor (Data 
locatability). 
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Table 4: p-value for Task 1 model (polynomial kernel) 

TTF indicators Bootstrap p-value f1 p-value f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with 
users

X .000*

.189
1.000 
.215

1.000 
1.000 
.634

1.000 

.000*

.052
1.000 
.079

1.000 
1.000 
.285

1.000 

*: significant with p-value < 0.05 

Table 5: p-value for Task 1 model (RBF kernel) 

TTF indicators Bootstrap p-value f1 p-value f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with 
users

X
X

.000*

.062

.479

.128

.701

.667

.251

.588

.000*

.022*

.291

.061

.501

.485

.117 

.365

*: significant with p-value < 0.05 

Tables 6 and 7 list the significant factors extracted for Task 2 with the polynomial and 
RBF kernels respectively. Again, they show that test statistic f2 extract more consistent 
factors with the bootstrap method than the f1 statistic. The f1 statistic claims too many 
factors as significant than the bootstrap method does. 

Table 6: p-value for Task 2 model (polynomial kernel) 

TTF indicators Bootstrap p-value f1 p-value f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with 
users

X

X

X

.000*

.039*

.000*

.122

.215
1.000 
1.000 
.001*

.000*

.060
.002*

.272

.389
1.000 
1.000 
.004*

*: significant with p-value < 0.05 
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Table 7: p-value for Task 2 model (RBF kernel) 

TTF indicators Bootstrap p-value f1 p-value f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with 
users

X
X
X

X

.000*

.003*

.000*

.011*

.022*

.014*

.117 
.000*

.000*

.028*

.010*

.112 

.193

.180

.487
.002*

*: significant with p-value < 0.05 

Tables 8 and 9 show results for the Task 3 regression problem. In this case, test 
statistics f1 and f2 are even in extracting significant factors for the task. The f2 statistic 
over-claims a significant factor (relationship with users) than the bootstrap method in the 
polynomial kernel case, and the f1 statistic fails to recognize this factor as significant in the 
RBF kernel case. 

Table 8: p-value for Task 3 model (polynomial kernel) 

TTF indicators Bootstrap p-value f1 p-value f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with 
users

X

X

.000*

1.000 
1.000
1.000 
.003*

1.000 
1.000 
.094

.000*

1.000 
1.000
1.000 
.001*

1.000 
1.000 
.029*

*: significant with p-value < 0.05

Table 9: p-value for Task 3 model (RBF kernel) 

TTF indicators Bootstrap p-value f1 p-value f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with 
users

X

X

X

.000*

.493

.698

.537
.001*

.162

.196

.053

.000*

.399

.655

.500
.001*

.164

.157
.045*

*: significant with p-value < 0.05 
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We further summarize the result in Tables 10 and 11. Each ‘X’ mark in a column for a 
row means the corresponding row factor is significant (p-value < 0.05) with the specific 
test procedure for the specific task. Table 10 summarizes the result for the polynomial 
kernel, and table 11 for the RBF kernel. From these two tables, we can see that test statistic 
f2 is more consistent with the bootstrap procedure in extracting significant factors. This 
may be due to the fact that the effective number of parameters from equation (15) is closer 
to the real number of parameters for our SVR models. 

Table 10: Significant factors from SVR (polynomial kernel) 

Task 1 Task 2 Task 3 
TTF indicators 

BS f1 f2 BS f1 f2 BS f1 f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with users

X X X X

X

X

X
X
X

X

X

X

X

X

X

X

X

X

X

X

BS: bootstrap; significant with p-value < 0.05 

3.3 Comparing the Factors 

Both MLR and SVR yield significant factors affecting the adoption of mobile 
commerce in our study of insurance industry. However, they offer different choices of the 
factors in the three major tasks of insurance agents. We discuss the difference in the 
following.

Table 11: Significant factors from SVR (RBF kernel) 

Task 1 Task 2 Task 3 
TTF indicators 

BS f1 f2 BS f1 f2 BS f1 f2

Data quality 
Data locatability 
Authorization 
Timeliness 
Compatibility 
System reliability 
Ease of use/Training 
Relationship with users

X
X

X X
X

X
X
X

X

X
X
X
X
X
X

X

X
X
X

X

X

X

X

X

X

X

X

X

BS: bootstrap; significant with p-value < 0.05 

3.3.1 Task 1: Recruiting new contracts 

The significant factor identified by MLR is data quality (Table 3), and the significant 
factors identified by the bootstrap procedure of SVR are data quality for the polynomial 
kernel and data quality and data locatability for the RBF kernel (Tables 10 and 11). MLR 
provides a linear model to fit the given data, while SVR with polynomial and RBF kernels 
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provide another means with different explanatory power to fit the data. A kernel function 
determines how the input will be mapped (nonlinearly) into a feature space. Different 
kernels mean different feature maps and provide different regression accuracies. For most 
cases, the RFB kernel provides better regression accuracy than the polynomial kernel, 
which predicts better than MLR in turns. Therefore, the significant factors extracted from 
the RBF kernel seem to explain the regression model better than the polynomial SVR and 
the MLR methods. 

3.3.2 Task 2: Post-contract customer services

Again, the significant factor identified by MLR is data quality (Table 3), and the 
polynomial SVR selects data quality, authorization and relationship with users indicators as 
the significant factors (Table 10). Using the bootstrap procedure, the RBF SVR adds the 
data locatability indicator to the list of significant factors (Table 11). This seems quite 
reasonable. The post-contract customer service is the most important reason that insurance 
agents need the mobility of a PDA to service their customers well. Customer may change 
the payment method, beneficiaries, and other terms of an insurance contract at anytime and 
anyplace, and the satisfaction and trust of the insured derived from such services will result 
in continuance of the existing contract and opportunity of new contracts in the future. Rules 
of thumb tell us that the other two major tasks of insurance agents can be helped by a rich 
personal network or well designed web system. On the other hand, many post-contract 
customer services are conducted face to face with the customers at anytime and anyplace, 
so insurance agents need professional and efficient technology to support the services. Task 
2 seems to be the most demanding task among the three for the PDA mobile technology, 
and our SVR approach picks out more factors as significant than the MLR approach. 

3.3.3 Task 3: Tax and legal information services

The MLR method captures data quality, compatibility and relationship with users as 
the significant factors for this task (Table 3); the bootstrap RBF SVR agrees with MLR in 
selecting the significant factors, while the polynomial SVR drops the relationship factor 
from the list of significant factors (Tables 10 and 11). In this case, we tend to believe that 
MLR and RBF SVR have selected the reasonable factors for further investigation.

4. Discussion and Conclusions 

In this study, we propose a novel application of SVM in regression analysis to model 
task variables in the TTF theory. SVM is founded on theories from (i) statistical learning; 
(ii) mathematical programming; and (iii) functional analysis. It has been used successfully 
in science and engineering to solve many real world problems, but the application of SVM 
in information systems study seems to be scarce. The support vector approach learns a 
parsimonious regression model from the given data to avoid the data over-fitting problem. 
Since it uses the SRM approach, a model trained by SVM generally performs better than 
ERM based methods such as ANN or MLR. We have shown that the SVR approach 
provides a higher accuracy level than the MLR approach in a case study of mobile 
technology adoption in insurance industry. 

We have also designed a bootstrap procedure to extract significant factors from the 
SVR approach. Our method compares SSE of the full model using all predictor variables 
and SSE of the reduced model using all but one predictor variable in regression modeling. 
As a common belief in statistics, if the left out variable is significant, then the difference 
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between these SSEs should also be significant. We proposed equation (13) as the test 
statistic and used a bootstrap procedure to test the null hypothesis. Bootstrap procedure is 
appropriate here since the probability distribution of the test statistic (13) is not known. 
This support vector approach has yielded different significant factors from those given by 
the MLR method. Significant factors extracted from different kernel functions (e.g. 
polynomial and RBF) in SVR also differ. This is reasonable since different kernels provide 
different explanatory power of the fitted data. In other words, MLR, SVR with polynomial 
kernel and SVR with RBF kernel provide three different models to fit the data and they 
offer different explanatory power of the data. In our experience and also the experiences of 
many other researchers (Keerthi and Lin 2003, Lin and Lin 2003), SVR with a RBF kernel 
seems to explain the data better than SVR with a polynomial kernel, which again explains 
the data better than a MLR approach in turns. Therefore, significant factors extracted from 
the bootstrap procedure of a SVR with RBF kernel should be more meaningful than the 
ones extracted by other methods. 

In addition to the bootstrap procedure, we also experimented two F-like test statistics 
for extracting significant factors. It is found that, for the case study of mobile technology 
adoption in insurance industry, test statistic f2 extracts more consistent factors with the 
bootstrap procedure when RBF kernel is used. This may be due to the fact that the effective 
number of parameters used in f2 is closer to the real number of parameters. Using f2, one 
needs not bootstrap many data sets to get a set of test statistics for comparison. On the 
other hands, we have to find the inverse of a high dimensional matrix in order to get the 
effective number of parameters. 

In summary, we suggest future study of information systems to use SVR with RBF 
kernels, and a bootstrap procedure or test statistic f2 to extract significant factors. This is 
because SVR with RBF kernels can explain the fitted data better, and bootstrap procedure 
or test statistic f2 extracts consistent factors in our case study. Though this finding is 
limited to the data set of our case study of mobile technology, we believe it should 
generally hold true for a fair class of data sets. Another issue in MLR involves the 
interaction factors between predictor variables. The reason why we did not consider 
stepwise regression in SVR as commonly used in MLR to discover interactions between 
predictor variables is because the interaction factors have been taken care of in the kernel 
of SVR. 

Our study in this paper has made the following contributions to the academia and the 
industry. First of all, we adopt a new regression method from science and engineering to 
study regression problems in information systems research. The SVR approach yields 
better regression accuracy than traditional MLR approach, and thus explains the data better. 
Secondly, we provide a novel approach to derive significant factors from SVR that affect 
an information technology adoption. This study of factors extraction from SVR seems to be 
very scarce in the literature. Our study has moved the understanding of SVR a further step 
forward. 

There are many methods for feature selection in the field of data mining. For example, 
one may consider the problem as a combinatory optimization problem that selects the best 
combination of features from the pool of available features. The goodness of a feature set is 
judged by its explanatory power such as R2 - the coefficient of determination, and the 
search toward a better feature set is guided by heuristic procedures like genetic algorithm 
or simulated annealing. The limitation of this research is: (1) We only compared the 
traditional multiple linear regression approach with the various support vector regression 
based methods. The support vector regression approach is a late favorite in the field of 
machine learning, and yet using the technique to select features is scarce. We combine the 
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support vector technique with a bootstrap method because the bootstrap method is a 
well-established procedure in statistics. (2) We tested our idea only on the data set collected 
from Lee et al. (2006). More verification may be performed on empirical data collected 
from future information system studies. 
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Appendix: Questionnaire problems used in study of Lee et al. (2006). All problems assume 
a 5-point Likert scale response model for 1 = Strongly disagree, 2 = Disagree, 3 = Fair, 4 = 
Agree, and 5 = Strongly agree 

Self assessment 

Task 1: The PDA mobile commerce system provides sufficient information for me to 
recruit new contracts 

Task 2: The PDA mobile commerce system provides sufficient information for me to 
conduct post-contract customer service 

Task 3: The PDA mobile commerce system provides sufficient information for me to offer 
other services such as tax and legal information to customers 

TTF indicators 

Data quality

1. The data provided by the PDA mobile commerce system can satisfy my work needs 
2. The PDA mobile commerce system has stored the necessary task related data 
3. The PDA mobile commerce system has stored correct data with the right granularity for 

the task 

Data locatability

1. It is easy to find the data that I need for the task in the PDA mobile commerce system 

2. Data in the PDA mobile commerce system are clearly defined 

Authorization

1. I am authorized to download work related data from the company database to my PDA 

Compatibility

1. Data from different sources for the PDA mobile commerce system are compatible with 

each other 

Reliability

1. The PDA mobile commerce system is reliable and functions correctly 

Ease of use/Training
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1. The PDA is easy to use 

2. The PDA mobile commerce system is easy to use 

3. I can always get the PDA related training whenever I need it 

4. I can always get the PDA mobile commerce system related training whenever I need it 

Relationship with users

1. The PDA mobile commerce system satisfies my daily work needs, and is consistent 

with the company goals 

2. The PDA mobile commerce system can support my customers’ requests 

3. Whenever I have special requests or need help for the task, the PDA mobile commerce 

system always provides me with the needed information  

4. The company provides good support for using the PDA technology 

5. The company provides good support for using the PDA mobile commerce system 

6. The PDA mobile commerce system provides me with the needed solution plans for the 

task


