
Mining Closed Multi-Dimensional Interval Patterns 161

Mining Closed Multi-Dimensional Interval

Patterns

Anthony J.T. Lee*

Department of Information Management, National Taiwan University

Fu-Chen Yang

Department of Information Management, National Taiwan University

Wei-Cheng Lee

Department of Information Management, National Taiwan University

Abstract

Many methods have been proposed to find frequent one-dimensional (1-D) interval

patterns, where each event in the database is realized by a 1-D interval. However, the

events in many applications are in nature realized by multi-dimensional intervals.

Therefore, in this paper, we propose an efficient algorithm, called MIAMI, to mine

closed multi-dimensional interval patterns from a database. The MIAMI algorithm

employs a pattern tree to enumerate all closed patterns in a depth-first search manner. In

the mining process, we devisethree effective pruning strategies to remove impossible

candidates and perform a closure checking scheme to eliminate non-closed patterns. The

experimental results show that the MIAMI algorithm is more efficient and scalable than

the modified Apriori algorithm.

Keywords: multi-dimension interval pattern, 1-dimension interval pattern, frequent

pattern, closed pattern, data mining

* Corresponding author. Email: jtlee@ntu.edu.tw

2011/03/19 received; 2011/07/07 revised; 2011/08/04 accepted

162 資訊管理學報 第十九卷 第一期

探勘封閉性多維度區間樣式

李瑞庭*

國立臺灣大學資訊管理學系

楊富丞

國立臺灣大學資訊管理學系

李偉誠

國立臺灣大學資訊管理學系

摘要

目前，已有許多學者提出探勘頻繁一維區間樣式的方法。但是，在實務上有

許多應用包括多維度區間的資料。因此，在本篇論文中，我們提出「MIAMI」演

算法，它利用頻繁樣式樹，以深度優先法遞迴產生所有的封閉性多維度區間樣式。

在探勘的過程中，我們設計三個有效的修剪策略，以刪除不可能的候選樣式，以

及使用封閉性測試移除非封閉性樣式。實驗結果顯示，MIAMI 演算法比改良式

Apriori演算法更有效率，也更具擴充性。

關鍵詞：多維區間樣式、一維區間樣式、頻繁樣式、封閉性樣式、資料探勘

* 本文通訊作者。電子郵件信箱：jtlee@ntu.edu.tw

2011/03/19投稿；2011/07/07修訂；2011/08/04接受

Mining Closed Multi-Dimensional Interval Patterns 163

1. INTRODUCTION

Interval-based pattern mining can be applied to various domains such as

meteorology, financial market analysis, bioinformatics, linguistics, and so on. Many

methods (Amo et al. 2008; Guyet & Quiniou 2008; Höppner 2001; Kam & Fu 2000;

Kong et al. 2010; Lee et al. 2009; Papapetrou et al. 2009; Patel et al. 2008; Winarko &

Roddick 2007; Wu & Chen 2007; Wu & Chen 2009) have been proposed to find

frequent one-dimensional (1-D) interval patterns, where each event in the database is

realized by a 1-D interval. A pattern is frequent if its support is not less than a

user-specified minimum support threshold, where the support of a pattern is defined as

the number of transactions containing the pattern in the database.

However, the events in many applications are in nature realized by

multi-dimensional (M-D) intervals. For example, a company may investigate its

competences and weaknesses under many financial indices, such as liability ratio,

operating profit ratio, earnings per share, marketing spending, and inventory cost, where

each index during a certain period of time may be represented by a 1-D interval. If we

find a pattern that the inventory cost of a company is greater than those of the other

companies, this may indicate that the company needs a more effective delivery

mechanism and inventory management. In addition, if we find another pattern that both

the revenue and marketing spending of a company increase over time, this may suggest

an expansion over marketing budget. However, these M-D interval patterns cannot be

mined by the previously proposed algorithms. Those applications have motivated us to

develop an algorithm of mining multi-dimensional interval patterns.

The frequent pattern mining problem was first introduced by Agrawaland Srikant

(1994). They proposed an algorithm, called Apriori, which uses the antimonotone

property to mine frequent itemsets from databases. The antimonotone property states

that all subpatterns of a frequent pattern must be frequent. Based on this property, a

frequent pattern of length k (k-pattern) can be generated by joining two frequent

(k-1)-patterns, k>2. The Apriori algorithm performs well for sparse datasets but not well

for dense datasets due to generating a large number of candidates and repeatedly

scanning the database. Han et al. (2000) introduced the FP-Growth algorithm to avoid

generating impossible candidates. The FP-Growth algorithm summarizes the database

into a FP-tree and uses the pattern growth approach to mine frequent patterns. Since all

information needed is stored in the FP-tree, it is not necessary to scan the database after

the tree has been created. Zaki & Hsiao (2005) proposed an algorithm, called CHARM,

164 資訊管理學報 第十九卷 第一期

to mine closed itemsets by using effective pruning strategies to remove impossible

candidates during the mining process. A frequent pattern P is closed if there does not

exist any super-patterns of P with the same support.

Sequential pattern mining discovers frequent subsequences as patterns in a

sequence database, where each transaction contains a sequence of itemsets. After the

problem was first introduced by Agrawal and Srikant (1995), many sequential pattern

mining algorithms (Han et al. 2000; Pei et al. 2000; Zaki 2001) have been proposed.

GSP (Agrawal & Srikant1995), an Apriori-based method, generates candidates and

finds all frequent patterns level by level in a breath-first search manner. SPADE (Zaki

2001) uses a vertical id-list format to represent the database and utilizes it to discover all

frequent patterns in the database. FreeSpan (Han et al. 2000) and PrefixSpan (Pei et al.

2001), based on the FP-Growth method (Han et al. 2000), build a projected database for

each frequent pattern and use it to find frequent patterns in a depth-first search manner.

Unlike sequential pattern mining, interval-based pattern mining focuses on

discovering relationships between events from the database where each transaction

contains a sequence of 1-D intervals (events). Kam and Fu (2000) used Allen’s

representation (Allen 1983) to illustrate the relationship between two intervals and

proposed a method, based on the Apriori algorithm, for finding frequent interval

patterns level by level. However, there is an ambiguity problem on the pattern

representation in Kam and Fu’s method. To resolve this problem, Wu and Chen (2007)

proposed a non-ambiguous pattern representation. Based on the representation, they

modified the PrefixSpan algorithm, called TPrefixSpan, to mine frequent interval

pattern in a depth-first search manner. Höppner (2001) proposed a method to discover

temporal rules from temporal state sequence databases. Winarkoand Roddick (2007)

introduced a maximum gap time constraint to get rid of insignificant patterns.

Papapetrou et al. (2009) developed a method that mines temporal arrangements of event

intervals. Lee et al. (2009) used an algorithm to summarize a database into a generalized

database, which can be used to efficiently mine interval patterns. Guyet et al. (2008)

utilized a density estimation of the distribution of events intervals to find frequent

patterns from temporal sequences. Patel et al. (2008) proposed a method, called IEMiner,

which finds frequent relational patterns and uses the patterns found to construct an

interval-based classifier to classify sequences into the closely related classes. Amo et al.

(2008) designed an Apriori-based algorithm, called MILPRIT, to mine interval-based

and point-based patterns. Wu and Chen (2009) presented an algorithm, called HTPM,

which finds temporal patterns from interval-based and point-based datasets. Kong et al.

Mining Closed Multi-Dimensional Interval Patterns 165

(2010) proposed an algorithm with four temporal predicates and applied it to explore

possible associative movements between the stock markets of Mainland Chinaand Hong

Kong.

To the best of our knowledge, there is no algorithm specially designed to mine

multi-dimensional interval patterns. Therefore, in this paper, we propose an algorithm,

called MIAMI, to mine closed multi-dimensional interval patterns from a database. The

MIAMI algorithm employs a pattern tree to enumerate all closed patterns in a

depth-first search manner. During the mining process, we devise three effective pruning

strategies to remove impossible candidates and perform a closure checking scheme to

eliminate non-closed patterns. Thus, it can efficiently mine closed multi-dimensional

interval patterns from the database.

The contributions of this paper are summarized as follows. First, we introduce a

novel concept of multi-dimensional interval patterns. Second, we propose an efficient

algorithm, called MIAMI, to mine closed multi-dimensional interval patterns from

databases. Third, during the mining process, we employ three effective pruning

strategies to prune impossible candidates and perform a closure checking scheme to

remove non-closed patterns. Finally, the experimental results show that the proposed

algorithm is more efficient and scalable than the modified Apriori algorithm.

The rest of the paper is organized as follows. Section 2 introduces the preliminary

concepts and problem definitions. Section 3 describes the proposed algorithm in detail

and presents an example to demonstrate how it works. Section 4 shows the performance

evaluation. Finally, the concluding remarks and future work are discussed in Section 5.

2. PRELIMINARIES AND PROBLEM DEFINITIONS

Consider a database containing m transactions, where each transaction contains a

sequence of multi-dimensional intervals.

Definition 1. (Interval) I = (Ps, Pe) is a one-dimensional (1-D) interval, where Ps≤Pe.

Note that if Ps = Pe, an interval will be degenerated into a point. That is, a point is a

special case of an interval.

Definition 2. (Relationship) Given two 1-D intervals I1 = (Ps1, Pe1) and I2 = (Ps2, Pe2),

the 1-D relationship between I1 and I2 is denoted as IR (I1, I2).

166 資訊管理學報 第十九卷 第一期

IR(X, Y) Notation X

Before 1 Y

Meet 2 Y

Started-by 3 Y

Finished-by 4 Y

Contain 5 Y

Overlapped-by 6 Y

Equal 7 Y

Overlap 8 Y

During 9 Y

Finish 10 Y

Start 11 Y

Met-by 12 Y

After 13 Y

Don’t care 0 Y ?

Figure 1：Fourteen relationships of two 1-D intervals.

To illustrate the relationship between two 1-D intervals, besides the thirteen

relationships described in Allen’s representation, we add one more relationship “don’t

care”, which means that we don’t care the relationship between both 1-D intervals.

Figure 1 illustrates the fourteen relationships between two 1-D intervals and their

notations. Let R be the universal set of the fourteen relationships, where R = {0, 1, 2, …,

12, 13}.

Definition 3. (Multi-dimensional interval) An multi-dimensional interval (MI for

short) is denoted as [I1, I2, …, In], where Ii is the ith dimensional interval, and n is the

number of dimensions.

Definition 4. (Multi-dimensional relationship) The multi-relationship (MR for short)

between two MIs, A = [I1,1, I1,2, …, I1,n] and B = [I2,1, I2,2, …, I2,n], is denoted as MR(A,

B) = (r1, r2, …, rn), where ri is an 1-D relationship between I1,i and I2,i, i.e. ri = IR(I1,i ,

I2,i), i=1, 2, …, n.

Definition 5. MR1 contains MR2, denoted as MR2
⊆MR1, if r1,k = r2,k or r2,k = 0, for all 1

≦k≦n, where MR1 = (r1,1, r1,2, …, r1,n), and MR2 = (r2,1, r2,2, …, r2,n).

Definition 6. (Pattern) (MI1, MI2, …, MIk, MR1, MR2, …, MRk(k-1)/2) is a

multi-dimensional interval pattern (pattern for short), where MIi is a multi-dimensional

intervals, MRj is a multi-relationship, i = 1, 2, …, k, j = 1, 2, …, k(k-1)/2. The length of

a pattern is defined as the number of MIs in the pattern. A pattern of length k is called a

Mining Closed Multi-Dimensional Interval Patterns 167

k-pattern. Note that the MR for eachpair of MIs is recordedin the pattern, and there is no

MR for 1-pattern.

Example 1. Consider a pattern (A, B, C, (1, 5), (2, 7), (0, 0)), where A, B and C are MIs,

the MR between A and B is (1, 5), the MR between A and C is (2, 7), and the MR

between B and C is (0, 0). That is, the 1-D relationship between A and B in the first

dimension is “before”, or we can say A before B in the first dimension. The 1-D

relationship between A and B in the second dimension is “contain”, or we can say A

contains B in the second dimension.

Definition 7. (Contain) A pattern P1 = (MI1,1, MI1,2, …, MI1,k, MR1,1, MR1,2, …,

MR1,k(k-1)/2) is a sub-pattern of a pattern P2 = (MI 2,1, MI2,2, …, MI2,m, MR2,1, MR2,2, …,

MR2,m(m-1)/2) if every MI in P1 can be found in P2, and the MR between any two MIs in

P1 is contained by the MR of the corresponding MIs in P2. We can also say that P2 is a

super-pattern of P1, or P2 contains P1.

Example 2. Consider the following two patterns, P1=(A, B, (1, 5)) and P2=(A, B, C, (1,

5), (2, 7), (0, 0)). P2 is a super-pattern of P1 since A and B appear in both P1and P2, and

the MR between A and B in P1 is same as that in P2.

Definition 8. (Frequent) A pattern is frequent if its support is not less than minsup,

where the support of a pattern is defined as the number of transactions containing the

pattern in the database, and minsup is a user-specified minimum support threshold.

Definition 9. (Closed) A frequent pattern P is closed if there does not exist any

super-pattern of P with the same support.

Definition 10. (Projection) The projection of a pattern P in a transaction T is defined as

the positions of the MIs in T so that the pattern formed by these MIs contains P, denoted

as, T<Pt1, Pt2, …, Ptk>, where Pti is the position of the i
th

 MI in T, i=1, 2, …, k.

Example 3. Consider the MI database in Table 1 and a pattern P = (A, C, (2, 7)). The

projection of P in T2 is denoted as T2<1, 3> since the pattern formed by the first and

third MIs in T2 contains P.

Table 1：An example database.

T1 (A, B, (1, 5))

T2 (A, B, C, (1, 5), (2, 7), (0, 0))

T3 (A, B, C, (1, 5), (2, 7), (0, 0))

168 資訊管理學報 第十九卷 第一期

Definition 11. (Projected Database) The projected database of a pattern P, denoted as

PDB(P), contains all the projections of P in the database.

The objective of the proposed method is to find all frequent closed

multidimensional patterns in a database with respect to the user-specified minimum

support threshold.

3. THE PROPOSED METHOD

In this section, we propose an algorithm, called MIAMI (Multi-dimensional

Interval Patterns MIne), to mine all frequent closed multi-dimensional patterns from a

database. The MIAMI algorithm grows patterns in a depth-first search (DFS) manner. In

the mining process, we devise three effective pruning strategies to prune impossible

candidates and perform a closure checking scheme to remove non-closed patterns.

3.1 Frequent pattern enumeration

To enumerate frequent patterns, we first list all seed patterns in the database and

extend each seed pattern to longer frequent ones in a DFS manner. For each pattern P,

we generate its frequent super-patterns in two phases. First, we increase the number of

NDCs between the MIs in P. A 1-D relationship not equal to “don’t care” is called a

NDC. We call this “dimension growth”. Second, we grow the pattern P by increasing

the number of MIs in the pattern, and call it “MI growth.”

Definition 12. (Seed pattern) A seed pattern is a frequent 2-pattern, where only one

1-D relationship between two MIs in the seed pattern is a NDC.

Example 4. Consider the database shown in Table1. Assume minsup=2. The seed

patterns are (A, B, (1, 0)), (A, B, (0, 5)), (A, C, (2, 0)) and (A, C, (0, 7)).

3.1.1 Frequent pattern tree

We use a frequent pattern tree to enumerate all frequent patterns, where each node

represents a pattern and each child node is a super-pattern of its parent node. The root of

the frequent pattern tree is an empty set. We first generate all seed patterns in the

database and put them as child nodes of the root node.

Every node in the tree may have two kinds of child nodes. One is generated by the

dimension growth whereas the other is generated by the MI growth. Let us consider the

database in Table 1. Assume minsup=2. All frequent patterns can be enumerated in the

frequent pattern tree as shown in Figure 2, where the solid and dotted arrows denote the

Mining Closed Multi-Dimensional Interval Patterns 169

{∅}

A,B,(1,0) A,B,(0,5) A,C,(0,7) A,C,(2,0)

A,B,(1,5) A,B,C,(1,0),(2,0),(0,0) A,B,C,(1,0),(0,7),(0,0) A,B,C,(0,5),(2,0),(0,0) A,B,C,(0,5),(0,7),(0,0) A,C,(2,7)

A,B,C,(1,5),(2,0),(0,0) A,B,C,(1,5),(2,7),(0,0) A,B,C,(1,0),(2,7),(0,0) A,B,C,(0,5),(2,7),(0,0)

child patterns grown from the parent pattern by the dimension and MI growth,

respectively, and the outer parentheses of each pattern are omitted.

Figure 2：The pattern tree of the database shown in Table 1.

3.1.2 Frequent pattern generation

To generate the super-patterns of a frequent pattern P, we first find the seed

patterns in P’s projected database, and then generate the frequent super-patterns of P by

joining P to each seed pattern joinable to P.

Definition 13. (Joinable class) A seed pattern S is joinable to P if either following

condition is satisfied.

1. Dimension growth: P contains both MIs in S, and the 1-D relationship in a

certain dimension in S is a NDC, while the corresponding relationship in P is

“don’t care”. The pattern of joining P to S is obtained by replacing the

corresponding relationship in P with the NDC in S.

2. MI growth: P and S share only one MI in common. The pattern of joining P to S

is P’, where the MIs and MRs of P’ are respectively the union of the MIs and

MRs of both P and S, and the remaining unknown MRs of P’ are marked as

“don’t care.”

Example 5. Consider 3 patterns P1 = (A, B, C, (1, 0), (2, 0), (0, 0)), P2 = (A, B, (0, 5)),

and P3 = (A, C, (2, 0)). P1 is joinable to P2 since it satisfies the first condition. Joining

P1 to P2, we have a pattern P4 = (A, B, C, (1, 5), (2, 0), (0, 0)), where the relationship (5)

is obtaining by replacing the corresponding relationship of P1 with the NDC of P2. P2 is

joinable to P3 since it satisfies the second condition. Joining P2 to P3, we get a pattern

170 資訊管理學報 第十九卷 第一期

P5 = (A, B, C, (0, 5), (2, 0), (0, 0)), where both MIs and MRs of P5 are the union of

those in P2 and P3. The remaining unknown MR between B and C is marked as “don’t

care.” However, P3 is not joinable to P1 because it does not meet any condition.

3.2 Pruning strategies and closure checking

In this section, we devise three pruning strategies and a closure checking scheme to

prune impossible candidates and non-closed patterns, where the first two pruning

strategies are discussed in Subsection 3.2.1 and the last one is described in Subsection

3.2.2.

3.2.1 Pruning strategies

Based on CHARM (Zaki & Hsiao 2005), we design two pruning strategies to

reduce search space while joining a pattern P1 and a seed pattern S to generate pattern

P2, where S is a frequent seed pattern in PDB(P1).

1. If PDB(P1) = PDB(S), then PDB(P2) = PDB(P1) = PDB(S). P1 is not closed

since P2 is a super-pattern of P1 and both have an identical projected database.

Every pattern grown from P1 is a sub-pattern of a pattern grown from P2. Thus,

we replace every occurrence of P1 with P2.

2. If PDB(P1) ⊃PDB(S), then PDB(P2) = PDB(S) ⊂PDB(P1). Thus, we keep P1

unchanged and put P2 as a child node of P1.

3.2.2 Relationship support checking

The relationship support checking is based on the characteristics of relationship

“don’t care”. That is, the support of relationship “don’t care” is equal to the summation

of the support of the other 13 relationships. Consider two patterns P1 and P2, where all

MIs in P1 and P2 are the same, and P1 has one 1-D relationship different from P2, where

the different relationship is “don’t care” in P1 and a NDC in P2. If P1 is infrequent, P2 is

infrequent too since the support of P2 is not greater than that of P1. By this property, we

prune P2 and skip the mining procedure for P2.

Example 6. Consider two patterns P1 = (A, B, C, (1, 1), (13, 1), (0, 0)) and P2 = (A, B, C,

(1, 1), (13, 1), (13, 0)). The only difference between P1 and P2 is the relationship

between B and C in the first dimension. If P1’s support is less than minsup, P2’s

supportmust be less than minsup. Therefore, we can prune P2 if P1 is infrequent.

Mining Closed Multi-Dimensional Interval Patterns 171

3.2.3 Closure checking

For a newly generated pattern P, we first remove all sub-patterns of P that have the

same support as P in the closed pattern pool. Next, we check if there exists a

super-pattern of P that has the same support as P. If this is not the case, P is added to the

closed pattern pool.

3.3 The MIAMI algorithm

In this section, wepropose an algorithm, called MIAMI, to mine closed

multi-dimensional interval patterns in a DFS manner. The MIAMI algorithm is shown

in Figure 3. It contains two procedures, namely, Dimension-Growth and MI-Growth.

They are executed subsequently and recursively, and depicted in Figure 4.

Algorithm: MIAMI

Input: A database D, a user-specified minimum support threshold minsup.

Output: All frequent closed patterns CP.

1 Scan database D once to find all seed patterns, and collect them into Ψ ;

2 CP = ∅;

3 Foreach P in .Ψ do

4 Check if there exists a super-pattern of P that has the same projected database as P; If this is

the case, prune P;

5 Call Dimension-Growth(P, minsup, CP);

6 CallMI-Growth(P, minsup, CP);

7 Check if P is closed. If this is the case, add P to CP and remove non-closed patterns from

CP;

8 end for

9 Return CP;

Figure 3：The MIAMI algorithm.

Procedure: Dimension-Growth

Input:A pattern R, a user-specified minimum support threshold minsup.

Output: All frequent closed patterns CP.

1 Find all seed patterns in the projected database of R by the pruning strategy in Subsection

3.2.2 and collect them intoΨ ’;

2 G = ∅;

3 ForeachU in Ψ ’ that satisfies the first condition in definition 13 do

4 Apply the pruning strategy described in Subsection 3.2.2 to prune impossible candidate

patterns;

172 資訊管理學報 第十九卷 第一期

5 Let V = R join U;

6 Check if V is frequent. Prune V if it is infrequent;

7 Apply the pruning strategies described in Subsection 3.2.1 to update the patterns in Ψ ’and

add all frequent patterns found to G;

8 end for

9 for each W in G do

10 Check if there exist a super-pattern of W that has the same support and occurrence as W. If

this is the case, prune W;

11 Call Dimension-Growth(W, minsup, CP);

12 CallMI-Growth(W, minsup, CP);

13 end for

14 Check if R is closed. If this is the case, add R to CP and remove non-closed patterns from

CP;

15 Return CP;

Figure 4：The Dimension-Growth procedure.

In the MIAMI algorithm, we first scan the database to find all seed patterns and

collect them into .Ψ in step 1. In step 4, we check if there exists a super-pattern of P

that has the same projected database as P. If this is the case, we prune P. In steps 5-6,

we call the Dimension-Growth and MI-Growth procedures to find the frequent

super-patterns of P in a DFS manner. In step 7, we check if P is a closed pattern. If this

is the case, we add P to CP and remove non-closed patterns from CP.

In the Dimension-Growth procedure, we find all seed patterns in the projected

database of P and collect them intoΨ ’ with the relationship support checking. In steps

3-8, for each U that satisfies the first condition in definition 13, we first apply the

pruning strategy described in Subsections 3.2.2 to prune impossible candidates in step 4.

Next, we join R to U to generate a new pattern V in step 5. Then, we check if V is

frequent in step 6. Finally, we apply the pruning strategies described in Subsection 3.2.1

to update the patterns in Ψ ’ and add all frequent patterns found to G. For each pattern

W in G, we check if there is a super-pattern of W that has same support and

occurrenceas W. If this is the case, we prune W in step 10. In steps 11-12, we call the

Dimension-Growth and MI-Growth procedures to grow the frequent super-patterns of W,

respectively. In step 14, we check if R is closed. If this is the case, we add R to CP and

remove non-closed patterns from CP.

The MI-Growth procedureis omitted here because they slightly differ only in steps

3-8. The process in the MI-Growth procedure from steps 3-8 is executed for each U in

Ψ ’ satisfies the second condition in definition 13. In short, the Dimension-Growth

Mining Closed Multi-Dimensional Interval Patterns 173

procedure first grows thedimensions of patterns by increasing the number of NDCs,

while the MI-Growth procedure increases the number of MIs.

3.4 An example

Let consider the database in Table 2. Assume that the minimum support threshold

is 2. First, we enumerate all seed patterns from the database, namely, P1 = (A, B, (1, 0)),

P2 = (A, B, (0, 5)), P3 = (A, D, (2, 0)), P4 = (B, C, (8, 0)), P5 = (B, C, (0, 9)), and P6 = (B,

D, (8, 0)). To reduce the candidates of joinable seed patterns to P1, the pruning strategy

in Subsection 3.2.2 is firstly applied to prune impossible seed patterns. Since pattern

Q=(A, B, C (1, 0), (0, 0), (0, 0)) is infrequent, all the sub-patterns of Q are infrequent

(relationship support checking). Thus, the seed patterns (B, C, (8, 0)) and (B, C, (0, 9))

are removed from the joinable class of P1. That is, the joinable class of P1 contains (A, B,

(0, 5)), (A, D, (2, 0)) and (B, D, (8, 0)).

Table 2：Another example database.

T1 (A, B, D, (1, 5), (2, 0), (8, 7))

T2 (A, B, C, (1, 5), (2, 0), (8, 9))

T3 (A, B, D, (1, 5), (2, 0), (8, 10))

T4 (A, B, D, (0, 5), (0, 0), (8, 3))

T5 (B, C, (8, 9))

T6 (B, C, (8, 11))

Next, we join P1 to (A, B, (0, 5)) and form a super-pattern (A, B, (1, 5)) by the

dimension growth. During the joining process, we find that the projected database of (A,

B, (0, 5)) is equal to the projected database of P1, which is the first case of the pruning

strategies in Section 3.2.1. Thus, P1 is replaced by (A, B, (1, 5)). Similarly, in the MI

growth, we join P1 to the other seed patterns and get two super-patterns, namely, P7 = (A,

B, D, (1, 5), (2, 0), (0, 0)) and P8= (A, B, D, (1, 5), (0, 0), (8, 0)).

To find the frequent super-patterns of P7, we find the seed patterns in the projected

database of P7. The seed pattern found is (B, D, (8, 0)). We join the seed pattern to P7

and find that this is also the first case of the pruning strategies in Section 3.2.1. Thus,

we replace P7 by the newly generated super-pattern (A, B, D, (1, 5), (2, 0), (8, 0)). Since

there are not available seed patterns in P7’s projected database, we use the closure

174 資訊管理學報 第十九卷 第一期

checking scheme to check whether P7 is closed or not. Because the closed pattern pool

is empty, P7 is added to the closed pattern pool. We then continue to P8 and find that P8

is a sub-pattern of P7 and both have the same support. Thus, P8 is removed. We

backtrack to P1 and check if P1 is closed. Although P1 is a sub-pattern of P7, they have

different supports. Thus, P1 is added to the closed pattern pool.

Now, we continue to P2. Note that although P2 is contained by P7, they have

different supports. We generate two super-patterns of P2, namely, P9 = (A, B, D, (0, 5),

(2, 0), (0, 0)) and P10 = (A, B, D, (0, 5), (0, 0), (8, 0)). Since the projected databases of

the seed patterns (A, D, (2, 0)) and (B, D, (8, 0)) are contained by P2’s projected

database, this is the second case of the pruning strategies in Section 3.2.1. We put P9

and P10 as a child node of P2. However, P9 is not closed and thusremoved. P10 is added

to the pool since it satisfies closure checking scheme. Similarly, we repeat the same

procedure and find that both (B, C, (8, 0)) and (B, C, (8, 9)) also satisfy closure

checking scheme, and thus, are added to the closed pattern pool, too. P5 and P6 are

non-closed patterns and removed subsequently.

Figure 5：The mining process for the database shown in Table 2.

Finally, the MIAMI algorithm finds six closed patterns P1=(A, B, (1, 5)), P2 = (A, B,

(0, 5)), P4= (B, C, (8, 0)), P7=(A, B, D, (1, 5),(2, 0),(8, 0)), P10 = (A, B, D, (0, 5),(0, 0),(8,

0)) and P11 = (B, C, (8, 9)) as shown in Figure 5, where the patterns marked by X mean

that they are removed by closure checking scheme and the patterns marked by a slash

means that they are replaced by the pruning strategies in Subsection 3.2.1.

{∅}

P3=A,D,(2,0)

Not closed

P5=B,C,(0,9)

Not closed

P4=B,C,(8,0)

P11=B,C,(8,9)

P1=A,B,(1,0)

A,B,D,(1,5),(2,0),(8,0) Not closed

P7=A,B,D,(1,5),(2,0),(0,0) P8=A,B,D,(1,5),(0,0),(8,0)

A,B,(1,5)

P2=A,B,(0,5)

P9=A,B,D,(0,5),(2,0),(0,0) P10=A,B,D,(0,5),(0,0),(8,0)

P6=B,D,(8,0)

Not closed

Not closed

Mining Closed Multi-Dimensional Interval Patterns 175

4. PERFORMANCEEVALUATION

In this section, we conducted the experiments to evaluate the performance of the

MIAMI algorithm and the modified Apriori algorithm by using both synthetic and real

datasets. Both algorithms were implemented by C++, Microsoft Visual Studio 2008. All

of experiments were performed on an IBM compatible PC with Intel Core 2 Quad CPU

Q9400 @ 2.66GHz, 2GB main memory, running on Windows XP Professional.

The modified Apriori algorithm (Agrawal & Srikant1994) grows patterns in a

breath-first search manner. It first finds all seed patterns from the database. Next,

itgenerates candidate 2-patterns by growing the dimensions for each seed pattern, which

is similar to the Dimension-Growth procedure in the MIAMI algorithm. Then, it scans

the database to count the support for each 2-pattern generated and finds all closed

2-patterns satisfying closure checking. Subsequently, it joins the closed 2-patterns to

each joinable seed pattern and generates all candidate 3-patterns. Then, it scans the

database once to find the support of each candidate, and checks if each candidate

satisfies frequency and closure requirement, which is similar to the MI-Growth

procedure in the MIAMI algorithm. Similarly, itrepeatedly uses closed (k-1)-patterns to

generate closed k-patterns through extending both dimension and MI of patterns until no

more closed patterns can be generated.

4.1 Synthetic data

The synthetic data generator is similar to the one used in Agrawal and Srinkant

(1995) with some modifications, where a transaction contains a sequence of MIsandthe

MRs between those MIs. First, we generate potential patterns whose lengths follow a

Poisson distribution with mean equal to
1

λ Then, we randomly select a pattern from the

potential patterns and use it to form a transaction whose length also follow a Poisson

distribution with mean equal to
2

λ Table 3 lists the parameters and the default settings

used in the synthetic data generator. Note that the support of a pattern is defined as the

fraction of transactions containing the pattern in the database in the experimental

section.

176 資訊管理學報 第十九卷 第一期

Table 3：Parameters used to generate synthetic data.

Meaning Setting

Number of potential patterns 500

Average length of potential patterns 5

Average length of transactions 5

Number of MIs 20

Number of dimensions 3

Number of transactions 50K

Minimum support 0.4%

4.2 Performance evaluation on synthetic data

In this section, we compared the MIAMI algorithm and the modified Apriori

algorithm by varying one parameter and keeping the others at the default values as

shown in Table 3. Figure 6 shows the runtime versus the minimum support threshold,

where the minimum support threshold varies from 0.3% to 0.5%. The MIAMI algorithm

runs 26%-67% faster than the modified Apriori algorithm, while the modified Apriori

algorithm runs out of main memory due to generating a large number of candidates

when the minimum support threshold is 0.3%. Since the MIAMI algorithm generates

patterns in a DFS manner, and employs the projected databases to localize the support

counting and pattern joins. Moreover, it employs three effective pruning strategies to

reduce search space and performs a closure checking scheme to remove non-closed

patterns. Therefore, the runtime of the MIAMI algorithm increases slower than that of

the modified Apriori algorithm when the minimum support threshold decreases.

Figure 6：Runtime versus minimum support.

Mining Closed Multi-Dimensional Interval Patterns 177

Figure 7：Runtime versus number of transactions.

Figure 7 shows the runtime versus the number of transactions for both algorithms,

where the number of transactions varies from 10K to 100K. As the number of

transactions increases, the runtime of both algorithms increases almost linearly. Since

the modified Apriori algorithm generates a large amount of candidates and needs more

database scans, the runtime of the modified Apriori algorithm is more than that of the

MIAMI algorithm.

Figure 8 shows the runtime versus the number of dimensions for both algorithms,

where the number of dimensions varies from 1 to 5. As the number of dimensions

increases, the number of closed patterns will increase sharply due to a large number of

combinations of different dimensions. Therefore, the runtime of both algorithms

increases sharply when the number of dimensions increases. However, the MIAMI

algorithm runs 10%-50% faster than the modified Apriori algorithm, because the

modified Apriori algorithm mines patterns level by level and generates a huge number

of candidates and non-closed patterns, while the MIAMI algorithm can prune many

impossible candidates and non-closed patterns.

178 資訊管理學報 第十九卷 第一期

Figure 8：Runtime versus number of dimensions.

Figure 9：Runtime versus average length of transactions.

Figure 9 shows the runtime versus the average length of transactions, where the

average length varies from 3 to 7. The number of closed patterns increases dramatically

as the average length of transactions increases. Thus, the runtime of both algorithms

increases quickly as the average length of transactions increases. The runtime of the

MIAMI algorithm runs 40% to 52% faster than the modified Apriori algorithm since the

modified Apriori algorithm generates too many non-closed patterns in each level.

Figure 10 shows the runtime versus the number of MIs for both algorithms, where

the number of MIs varies from 20 to 40. The runtime of both algorithms decreases

sharply while the number of MIs increases. The MIAMI algorithm runs 20%-50% faster

than the modified Apriori algorithm because it generates much fewer candidates and

Mining Closed Multi-Dimensional Interval Patterns 179

non-closed patterns. The modified Apriori algorithm generates fewer candidates as the

number of MIs increases because more impossible candidates are pruned. Thus, the

runtime of the modified Apriori is closed to the runtime of the MIAMI algorithm while

the number of MIs is large.

Figure 10：Runtime versus number of MIs.

4.3 Performance evaluation on real data

We used a real dataset to evaluate the performance of the proposed method. The

dataset was collected from Yahoo! Finance (http://finance.yahoo.com/) from August

2005 to March 2011. We selected three firms in the telecommunication industry sector,

namely Chunghwa Telecom (CHT), Taiwan Mobile (MYFONE), and Far Eastone

Telecom (FET).

Every transaction in the dataset is formed weekly and contains three MIs, namely

CHT, MYFONE, and FET, where each MI has four dimensions. Each dimension

records the interval of a certain value in a week: the first dimension-close prices, the

second dimension-trading volumes, the third dimension-price fluctuation (defined as the

ratio of the daily highest price minus the lowest price to the close price), and the fourth

dimension-return of investments (ROI defined as the ratio of money gained or lost to

the amount of money purchased in the previous day).

The performance of both algorithms using the real dataset is quite similar to that

found using the synthetic data. Figure 11 shows the runtime versus the minimum

support threshold for both algorithms, where the minimum support threshold varies

180 資訊管理學報 第十九卷 第一期

from 14% to 24%. As the minimum support decreases, the MIAMI algorithm

outperforms the modified Apriori algorithm which generates numerous candidates and

non-closed patterns. Thus, MIAMI algorithm is much more efficient and scalable than

the modified Apriori algorithm.

Figure 11：Runtime versus minimum support threshold.

In this real dataset, some interesting patterns would be found. For example, pattern

P1 = (CHT, MYFONE, FET, (13, 13, 0, 0), (13, 13, 0, 0), (13, 0, 0, 0)) shows that CHT

is usually greater than the others in both stock price and trading volume and holds the

leading position in the telecommunication industrysector. Also, pattern P2 = (CHT,

MYFONE, FET, (0, 0, 6, 0), (0, 0, 6, 0), (0, 0, 8, 0)) indicates that CHT usually has the

least price fluctuation. However, pattern P3 = (CHT, MYFONE, FET, (0, 0, 8, 0), (0, 0,

8, 0), (0, 0, 0, 0)) reveals that the price fluctuation of CHT overlaps with those of

MYFONE and FET and pattern P4 = (CHT, MYFONE, FET, (9, 0, 0, 6), (9, 0, 0, 6), (0,

0, 0, 0)) indicates while the price of CHT is contained by those of MYFONE and FET,

the ROI of CHT is overlapped bythose of MYFONE and FET. In year 2008, CHT

suffered from twice significant price decline due to the great loss to revenue. One was

caused by the financial shortfall of 4 billion dollars because of the appreciation of NT

dollars and the otherwas from excluding dividend and rightwhich directly diminished

the market capitalization by more than 40 billion NT dollars. Excluding dividend and

right is to return parts of profits of a company to its shareholders in form of, primarily,

cash or stocks. In general, a stock's price drops roughly by the amount of the dividend

Mining Closed Multi-Dimensional Interval Patterns 181

and rightwhich results from the economic value transfer and also to keep the

equivalence of rights and interests for the stock buyers before/on the Excluding

Dividend (ED) day. Thus, the price fluctuation of CHT was much greater than those of

MYFONE and FET, and the ROI of CHT was also worse than those of MYFONE and

FET in year 2008.

In addition, pattern P5 = (MYFONE, FET, (1, 0, 0, 6)) depicts that the ROI of

MYFONE is overlapped by that of FET only when the price of FET is greater than

thatof MYFONE. In year 1998, FET was the first company that launched a fully

integrated dual-band (GSM 900 and GSM 1800) system in the world so that FET

provided better quality services. Also, FET proposed many innovative marketing

strategies, such as, pre-paid cards and charge in seconds. Moreover, FET had numerous

and unique channels of distributions. Thus, it has higher stock price and ROI than

MYFONE at that time. However, another pattern P6 = (MYFONE, FET, (5, 8, 8, 0))

shows that the volume and price fluctuation of MYFONE are overlapped with that of

FET when the price of MYFONE contains that of FET. Around years 2008-2009,

MYFONE completed a series of mergers and acquisitions with three companies,

including TransAsia Telecommunication, Mobitai Communications and Taiwan Fixed

Network. Thus, MYFONE became the pioneering company offering "quadruple play"

services namely, mobile, fixed-line, cable TV, and broadband. MYFONE launched three

brands namely, Taiwan Mobile, TWM Broadband, and TWM Solution, to promote its

quadruple play services for the consumer, household and enterprise markets, and

thussubstantially increased the coverage of services and users. From both patterns, we

observe that FET aggressively provided good services for users and had higher stock

price and ROI than MYFONE in the early stage; however, MYFONE outperformed

FET after a series of mergers and acquisitions in years 2008-2009.

In summary, MIAMI algorithm generates patterns in a DFS manner and employs

the projected databases to localize support counting and pattern joins. Moreover, it

employs three effective pruning strategies to reduce search space and performs a closure

checking scheme to remove non-closed patterns. Therefore, MIAMI algorithm is more

efficient and scalable than the modified Apriori algorithm in both synthetic and real

datasets.

5. CONCLUSIONS AND FUTURE WORK

We have proposed an efficient algorithm, called MIAMI, to mine closed

182 資訊管理學報 第十九卷 第一期

multi-dimensional interval patterns in a database. The MIAMI algorithm first finds all

seed patterns in the database, and then grows closed patterns in two phases, namely,

Dimension-growth and MI-growth. We grow a frequent pattern to find longer frequent

ones by increasing the number of NDCs between the MIs in the pattern in the dimension

growth phase and increasing the number of MIs in the pattern in the MI growth phase.

During the mining process, we employ three effective pruning strategies to eliminate

impossible candidates and a closure checking scheme to remove non-closed patterns.

Thus, the proposed algorithm can efficiently mine closed multi-dimensional interval

patterns in databases. The experimental results show that the proposed algorithm is

more efficient and scalable than the modified Apriori algorithm in the synthetic and real

datasets.

By introducing the “don’t care” relationship, we can consider every possible

combination of M-D interval patterns. In addition, if each MI in a pattern represents 1-D

interval, the pattern will become a 1-D interval pattern. Thus, mining 1-D interval

patterns is a special case of mining M-D interval patterns. That is, we generalize 1-D

into M-D interval patterns. Therefore, we are able to mine patterns in a more flexible

way and discover more interesting patterns.

Our proposed algorithm MIAMI can be applied in many ways wherever the

applications are realized by multi-dimensional intervals. For example, the investors may

raise funds on the companies in stock market from the investigation of some interval

indices, such as, stock price, trading volume, and volume of sales in marketplace.

Managers might wonder the factors which contribute to better productivity by observing

the relationships among human forces, the probability of malfunctioning, the

satisfaction of labors, and the level of automation. Home buyers may investigate the

trends of real estate if the range of prices and geographic zones of houses and

apartments are recorded. The government may work on the primary weaknesses of

administration by identifying those lagging indices, such as, the rate of unemployment,

GDP, national income, and the rate of economic growth. Or, the government may make

policies according to the comprehension of the gender equivalence through the analysis

of the varied relationships in terms of both ages and average salaries. Thus, the MIAMI

algorithm significantly broadens the applications as well as enriches the managerial

implications and decisions.

Although the MIAMI algorithm can efficiently mine closed multi-dimensional

interval patterns, it can be further improved to address other issues. It is worth

extending the method further to mine closed patterns with some constraints to mine

Mining Closed Multi-Dimensional Interval Patterns 183

patterns in need and exclude the unnecessary patterns. In addition, it may be meaningful

to consider the relationships between different dimensions in real world applications.

Thus, the MIAMI algorithm can be extended to mine the patterns with the relationship

between different dimensions. Moreover, it is helpful to design a parallel algorithm to

accelerate the mining process in the future.

Acknowledgements

The authors are grateful to the anonymous referees for their helpful comments and

suggestions. This research was supported in part by the National Science Council of

Republic of China under Grant No. NSC 100-2410-H-002-023-MY3.

References

Agrawal, R. and Srikant, R. (1994),‘Fast algorithms for mining association rules’,

Proceedings of the International Conference on Very Large Data Bases, Vol. 1215,

pp. 487-499.

Agrawal, R. andSrikant, R. (1995), ‘Mining sequential patterns’, Proceedings of the

International Conference on Data Engineering, Taipei, Taiwan, pp. 3-14.

Allen, J.F. (1983),‘Maintaining knowledge about temporal intervals’, Communications

of the ACM, Vol. 26, No.11, pp.832-843.

Amo, S. de, Junior, W.P. andGiacometti, A. (2008), ‘MILPRIT*: A constraint-based

algorithm for mining temporal relational patterns’, International Journal of Data

Warehousing and Mining, Vol. 4, No. 4, pp. 42-61.

Guyet, T.and Quiniou, R. (2008), ‘Mining temporal patterns with quantitative intervals’,

Proceedings of International Conference on Data Mining, pp. 218-227.

Han, J., Pei, J. and Yin, Y. (2000),‘Mining frequent patterns without candidate

generation’, Proceedings of the ACM SIGMOD International Conference on

Management of Data, Vol. 29, No.2, pp. 1-12.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U. and Hsu, M.C. (2000),‘FreeSpan:

Frequent pattern-projected sequential pattern mining’, Proceedings of International

Conference on Knowledge Discovery and Data Mining, Boston, USA, pp.355-359.

Höppner, F. (2001),‘Learning temporal rules from state sequences’, Proceedings of

International Joint Conferences on Artificial Intelligence Workshop on Learning

from Temporal and Spatial Data, Seattle, USA, pp. 25-31.

Kam, P.-S. and Fu, A. W.-C. (2000), ‘Discovering temporal patterns for

184 資訊管理學報 第十九卷 第一期

interval-basedevents’, Proceedings of Second International Conference on Data

Warehousingand Knowledge Discovery, London, UK, pp. 317-326.

Kong, X., Wei, Q. and Chen, G. (2010), ‘An approach to discovering multi-temporal

patterns and its application to financial databases’, Information Sciences, Vol. 180,

No. 6, pp. 873-885.

Lee, Y.J., Lee, J.W., Chai, D.J., Hwang, B.H. and Ryu, K.H. (2009), ‘Mining temporal

interval relational rules from temporal data’, The Journal of Systems and Software,

Vol. 82, No. 1, pp. 155-167.

Papapetrou, P., Kollios, G., Sclaroff, S. and Gunopulos, D. (2009),‘Mining frequent

arrangements of temporal intervals’, Knowledge and Information Systems, Vol. 21,

No. 2, pp. 133-171.

Patel, D., Hsu, W. and Lee, M. (2008), ‘Mining relationships among interval-based

events for classification’, Proceedings of the ACM SIGMOD International

Conference on Management of Data, Vancouver, Canada, pp. 393-404.

Pei, J., Han, J. and Mao, R. (2000), ‘CLOSET: An efficient algorithm for mining

frequent closed itemsets’, Proceedings of the 5th ACM-SIGMOD Workshop on

Research Issues in Data Mining and Knowledge Discovery, Dallas, USA,

pp.11-20.

Pei, J., Han, J., Mortazavi-Asl, B. and Pinto, H. (2001), ‘PrefixSpan：Mining sequential

patterns efficiently by prefix-projected pattern growth’, Proceedings of the17th

International Conference on Data Engineering, Heidelberg, Germany, pp.215-224.

Winarko, E. and Roddick, J.F. (2007), ‘ARMADA - An algorithm for discovering richer

relative temporal association rules from interval-based data’, Data and Knowledge

Engineering, Vol. 63, No. 1, pp. 76-90.

Wu, S.-Y. and Chen, Y.-L. (2007),‘Mining nonambiguoustemporalpatterns for

interval-based events’, IEEE Transactions on Knowledge and Data Engineering,

Vol. 19, No. 6, pp. 742-758.

Wu, S.-Y. and Chen, Y.-L. (2009), ‘Discovering hybrid temporal patterns from

sequences consisting of point- and interval-based events’, Data and Knowledge

Engineering, Vol. 68, No. 11, pp. 1309-1330.

Zaki, M.J. (2001), ‘SPADE: An efficient algorithm for mining frequent sequences’,

Machine Learning, Vol. 42, No. 1-2, pp.31-60.

Zaki, M.J. and Hsiao, C.-J (2005), ‘Efficient algorithms for mining closed itemsets and

their lattice structure’, IEEE Transactions on Knowledge and Data Engineering,

Vol. 17, No. 4, pp. 462-478.

