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Abstract
Large amount of high-dimensional mixed-type data including numeric as well as 

categorical attributes are commonly seen in corporate databases nowadays. Being able to 

analyze those data is important for supporting decision making. Visualization is essential in data 

mining, especially, at the initial stage of data analysis. Self-Organization Map (SOM) provides 

users an efficient data visualization interface to analyze the characteristics of high-dimensional 

data on a low-dimensional map. However, most SOMs need to predetermine the size of the map 

prior to training. Consequently, the resultant map must be constrained in a static, fixed-size map 

and could not extend with extra neurons in accordance with the nature of the data. Although 

growing SOM (GSOM) was proposed to tackle the foregoing problem via more flexible 

structures, GSOM lacks the ability to handle mixed-type data which include numeric as well as 

categorical attributes. In this study, we propose Growing Mixed SOM (GMixSOM) intending to 

handle high-dimensional mixed-type data in a map with flexible structure. Experimental results 

indicate that the proposed model not only can present the topological relationship between 

mixed-type data but also demonstrate better performances of data clustering compared to the 

conventional GSOM.

Key words :  data mining; data visualization; Self-Organization Map (SOM); mixed-type 
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摘要

現今企業資料庫中，隨處可見大量包含數值型與類別型屬性的高維度混合型資料。

這些資料中常隱含有用資訊，因此如何能有效地分析這些資料從而支援決策，儼然是企

業經營管理上的一項重要課題。在探勘資料時，視覺化一直是資料分析初始階段中相當

重要的一環。自組映射圖能夠提供一個高效率的資料視覺化介面，讓使用者能於低維度

映射圖上分析高維度資料的特徵。然而，對大部分自組映射圖演算法而言，使用者必須

在訓練之前先行決定映射圖大小，也因此最終的映射結果會被此預設固定大小的圖形所

限制，無法依據資料的本質擴充所需的神經元。雖然已有學者提出具備更彈性化結構的

成長式自組映射圖克服前述問題，然而成長式自組映射圖仍然無法有效處理包含數值型

與類別型屬性的混合型資料。本研究提出一個成長式混合型自組映射圖架構及訓練演算

法，以更彈性的結構圖處理高維度混合型資料。經由實驗結果證實，本研究所提出的方

法不但可表現混合型資料的拓撲關係，更可於資料分群上表現出較傳統自組映射圖更好

的績效。

關鍵字：��資料探勘、資料視覺化、自組映射圖、混合型資料
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1. INTRODUCTION

Nowadays, data mining has been regarded as an efficient tool for business analysts to 
explore and analyze large amount of data from corporate databases. In business, the knowledge 
mined from the data has been demonstrated that they can be beneficial for applications 
ranging from market analysis, fraud detection, and customer retention, to production control 
and science exploration  (Dunham, 2003; Fayyad et al. 1996; Han et al. 2006). Nevertheless, 
most transactional data consist of a variety of numeric and categorical attributes in reality. It 
is difficult for human to explore and extract valuable information from mass high-dimensional 
mixed-type data. In order to help analysts process those data and extract knowledge to support 
decision making efficiently. It has become an important issue in data mining research to provide 
analysts an appropriate data visualization solution to handle high-dimensional mixed-type data  
(Cesario et al. 2007; Chakrabarti et al. 2009; Kaban et al. 2001; Kosara et al. 2006; Nabney et 
al. 2005).

Self-Organizing Map (SOM), proposed by Kohonen (Kohonen 1990; Kohonen 1995), is 
regarded as an effective data visualization technique in data mining applications. It can map 
high-dimensional data into low-dimensional representation space and preserve the original 
topological relationship between input data via the data projection concept. Nevertheless, these 
conventional SOMs must predefine the map structure prior to training. Once the map size is not 
enough large, it will be unable to represent the original topology of input data set appropriately. 
On the contrary, too large map size may cause similar data be dispersed to excess number of 
clusters.

Growing SOM (GSOM) provides a feasible visualization solution for improving the 
foregoing problem of conventional SOM methods  (Alahakoon et al. 2000;  Haiying et al. 2004). 
It applies a dynamic structure that is generated during the training processes. The training starts 
with a small size of initial map and the map grows along with increasing number of the training 
data so as to reflect on the map the distribution of the training data. The resultant visualization 
map can appropriately develop different shapes depending on the clusters presented in the data. 
Nevertheless, the SOM and GSOM can handle only numeric data. Neither one can manipulate 
mixed-type data, containing both numeric and categorical attributes, in data clustering problems. 
To address this deficiency, Hsu (2006) proposed Generalized SOM (GenSOM) which handles 
mixed-type data. GenSOM utilizes a novel data structure, distance hierarchy, for uniformly 
representing numeric and categorical data so that both can be processed in a united manner. 
The distance between two mixed-type data is calculated by first mapping the data to points 
in distance hierarchies and then measuring the distance between the mapping points in the 
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hierarchies. Although alleviating the problem with mixed-type data, GenSOM adopted a fixed 
structure of the map and lacked the flexibility of adapting its structure according to the nature 
of the training data. In other words, it is unable to effectively preserve the topological order 
because of applying the conventional scheme, requiring a pre-specified map size prior to 
training.

In this paper, to tackle the problems seen in the previous SOM models, we propose 
Growing Mixed SOM (GMixSOM), intending to process mixed-type data with a dynamic 
map structure so as to offer data analyst a convenient, visualized tool for analyzing nowadays 
business data. The proposed model retains the advantages of the previous models by integrating 
the data structure of distance hierarchy and the concept of dynamic structure such that the model 
can manipulate mixed-type data and improve the visualized results in the low-dimensional 
projection map. This paper is structured as follows. Section 2, dynamic structure schemes for 
data projection methods and distance hierarchy for categorical data are reviewed and discussed 
briefly. Section 3, the processes of GMixSOM, cross insert and several performance indices 
are elaborated. Section 4, several experiments were conducted to verify the performance of 
GMixSOM for mixed-type data. Finally, some conclusions are stated at the end of this paper. 

2. LITERATURE REVIEW

Several dynamic structure schemes were proposed to improve the constraints of fixed-
size map occurring in data projection methods. Distance hierarchy can manipulate the distance 
measurement of categorical data in the training of SOM. In this section, they are briefly 
reviewed and discussed.

2.1 Dynamic structure schemes for data projection method

A fixed-size map possesses two major limitations: (1) both a priori the map size (number 
of neurons) and the topology (dimension and links structure) must be determined prior to 
training and (2) the problem with cluster boundary decision due to predetermined and fixed 
topological boundary  (Forti et al. 2006). Therefore, a dynamic structure scheme is an appealing 
resolution for data projection methods to overcome these limitations of fixed-size map.

Blackmore and Miikkulainen  (1993) proposed Incremental Grid Growing (IGG) to resolve 
the drawback that fixed grid map cannot properly reflect the structure of clusters in the input 
space. In this model, nodes and connections are added or deleted from the map according to 
the input distribution and their Euclidean distance satisfying a given threshold. Growing Cell 
Structure (GCS), proposed by Fritzke  (1999; 1993; 1994) is another solution for providing map 
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a dynamic structure. The network of GCS has variable number of elements and k-dimensional 
topology whereby k is an arbitrarily positive integer chosen in advance. Only the winner node 
and its direct, topological neighbors are adapted for each input. Always after a constant number 
of training iterations, a new node will be inserted by splitting the longest edge emanating from 
the node possessing the maximum accumulated error. Two hierarchical architectures of GCS 
were proposed to extend the GCS and improve the massive upheaval due to the fact that node 
deletion is removed  (Burzevski et al. 1996;  Hodge et al. 2001).

Growing Grid can be regarded as a variant of self-organizing feature map  (Fritzke 1995). 
There are two major phases, a growth phase and a fine-tuning phase, to build a growing 
rectangular network in this model. In the growth phase, a rectangular network is initialized with 
a minimum size and grows by means of inserting complete rows and columns until the desired 
size is reached or a performance criterion is met. Once the growing terminates, the reference 
vectors are further tuned to find the best value by a decaying learning rate in the fine-tuning 
phase.

Growing Hierarchical SOM (GHSOM) presents a growing hierarchical architecture to 
resolve fixed network architecture and reflect hierarchical structure of the input data in the map 
(Rauber et al. 2002). This model has a hierarchical structure, where SOM-like neural networks 
with adaptive architecture forms the various layers of the hierarchy. The size of these SOM-like 
neural networks as well as the depth of the hierarchy of the GHSOM is determined during its 
unsupervised training process according to the structure of the data. Growing Hierarchical Tree 
SOM (GHTSOM) consists of two main processes: training and clustering. A tree of identical 
SOMs is constructed in the training while the clustering process considers each level of the tree 
and uses self-organization to group neurons in classes (Forti et al. 2006). 

GSOM applies another dynamic structure in SOM (Alahakoon et al. 2000), consisting of 
three phases: initial, growing and smoothing. In the initial phase, four neurons are randomly 
initialized and a growth threshold (GT) is calculated according to the spread-out factor (SF). 
In the growing phase, either several new neurons may be added around the best matching unit 
(BMU) or BMU´s error is rippled outward to its immediate neighbors. In the smoothing phase, 
inputs are projected to their BMUs and existing quantization errors are smoothed out without 
inserting new neurons. Furthermore, a semi-supervised learning method for the GSOM (Hsu 
et al. 2008), a hybrid method combining GSOM with SOM (Wang et al. 2002), a hexagonal 
GSOM map structure applying fixed training time to insert new neurons (Chan et al. 2008) were 
proposed. 

In summary, most dynamic structure models of data projection methods effectively 
overcome the deficiency of fixed-size maps. Nevertheless, they can handle only numeric 
attributes but cannot directly process categorical or mixed-type data. Moreover, inserting new 
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neurons around BMU is an essential process in a dynamic structure model. Those new neurons 
were inserted around BMU when a specified time or the growth threshold was met. However, 
they were determined by the available locations but not the most suitable location with respect 
to the BMU. Those redundant new neurons will increase unnecessary computational effort 
during training. Furthermore, both the learning rate and the neighborhood size are decreased as 
the training iteration increases in SOMs. Therefore, the update force for neurons will be shrunk 
as these foregoing parameters decrease simultaneously. The order of training data will influence 
the update force. Those earlier training inputs obtain stronger update force than latter ones.

2.2 Distance hierarchy for categorical data

A distance hierarchy, structured by concept nodes and links, represents the ontological 
relationship between concepts (Hsu 2006). In this hierarchical structure, the upper nodes 
represent more general concepts; on the contrary, the lower nodes represent more specific 
concepts. For example, the nodes of Coke and Pepsi are belonged to carbonated drinks as shown 
in  Fig. 1a. Juice, coffee and carbonated drinks all belong to “Any＂.

To illustrate the difference between distance hierarchy and other methods, the distances 
between Coke, Pepsi and Mocca are measured through distance hierarchy, simple matching 
and binary encoding, respectively, as shown in  Table 1. With simple matching, two distinct 
values result in a distance of one and identical values have a distance of zero. With binary 
encoding, a categorical value is encoded by a vector of binary values. One of the binary values, 
corresponding to the categorical value, has a value of one and the others are set to zero. The 
distance between two categorical values is then measured by the Euclidean distance of the two 
vectors. As for the distance hierarchy scheme, assume the weight of each link is set to one to 
represent the distance between a node and its parent node. The distance between two categorical 
values is measured as the path length between the values in the distance hierarchy. As shown 
in Fig. 1a, the path length is 4 between Coke and Mocca and 2 between Coke and Pepsi. As 
the result shown in  Table 1, neither simple matching nor binary encoding can distinguish the 
difference between the three drinks. In other words, the three drinks have the same distance (or 
similarity) based on the foregoing two methods. By contrast, distance hierarchy can intuitively 
and appropriately represent that Coke is more similar to Pepsi than to Mocca. Consequently, 
distance hierarchy is a feasible mechanism to represent the distance between categorical data. 

Specifically, a point X in a distance hierarchy can be denoted by an anchor and its positive 
offset as X = (NX, dX), where NX is one of the leaf nodes and dX is the distance from the root to X. 
The distance between point X and another one Y can be calculated as follows.
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Figure 1:  (a) Distance hierarchy with link weight 1 for a categorical attribute “Drink”.

(b) A distance hierarchy for a numeric attribute.

Table 1: Distance comparison between methods.

Method
Node Distance hierarchy Simple matching Binary encoding

Coke Mocca 4 1 1.414
Coke Pepsi 2 1 1.414

Mocca Pepsi 4 1 1.414
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2.3 Construction of distance hierarchy

In data mining, accredited domain concept hierarchy is the first choice for distance 
hierarchy such as International Classification for Diseases (ICD 2010) in medicine, ACM ś 
Computing Classification System (CCS 2010) in computer science, and Global Product 
Classification (GPC 2010) in business. However, many domains still lack regular and accredited 
concept hierarchies for defining the relationship between different items. In such domains, the 
distance hierarchies can be constructed manually by domain experts. People may argue over 
the qualification of distance hierarchies based on experts  ́subjective viewpoints. Nevertheless, 
domain problems should be defined and resolved by the experts in the domain in general. The 
abovementioned existing hierarchies were defined by domain experts after all.

 In addition to the aforementioned two sources for the distance hierarchies, an automatic-
constructing distance hierarchy is another alternative. For example, a distance hierarchy can be 
built by hierarchically clustering the dissimilarity between categorical values. The dissimilarity 
between categorical values can be measured by the co-occurrence proportion of categorical 
values to an external probe set (Das et al. 1998; Palmer et al. 2003). Especially, this method 
is suitable for encrypted categorical values due to confidentiality or privacy requirement. 
Furthermore, a two-level distance hierarchy in which all values are located at the same level 
below the root can be used in case that the hierarchy cannot be built due to the lack of a proper 
external probe set. In a two-level hierarchy, the dissimilarity between two distinct categorical 
values is one and other zero between two identical values. A disadvantage of the hierarchy is 
that the different extent of similarity among different values cannot be discriminated. In other 
words, a two-level distance hierarchy fails to reflect the similarity degree between categorical 
data.

For data projection methods, the variety of distance hierarchies may yield different 
mappings in accordance with the similarity relationship of categorical items, respectively. 
Accredited domain concept hierarchies can be accepted by most people but they are only 
supported in a few domains. Consequently, expert-built concept hierarchy becomes a reasonable 
alternative for categorical data analysis in practice. Automatic-constructing concept hierarchies 
can be built objectively provided that a proper external probe set can be found. The set of 
labels in the class attribute is usually a good choice. In the four sources for the hierarchies, 
the approach of the two-level hierarchies is the simplest one but may fail to preserve correct 
topological order of the data on the map due to the equal distance between categorical values.

3. VISUALIZE MIXED-TYPE DATA BY GMIXSOM

In this paper, we propose a mixed-type SOM with dynamic structure, called growing 
mixed SOM (GMixSOM), which integrates the distance hierarchy and the dynamic structure 
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scheme to manipulate both numeric and categorical data in a flexible growing map. By means of 
GMixSOM, the resultant map could better present the topological relationship between mixed-
type data in high-dimensional space than that of GSOM. The training algorithm of the model is 
presented below and elaborated in the subsequent sections. 

 

Fig. 2. The proposed GMixSOM training algorithm. 

3.1 Process of GMixSOM 

The training of a GMixSOM can be divided into two phases: initialization and growing, as 
shown in Fig. 2. In the initialization, a small-size map with random weights is created and 
growing threshold is determined. In the growing, training data are presented one by one to 
adjust the weight distribution of map neurons and meanwhile training errors are accumulated 
in neurons. When the accumulated error in a neuron exceeds the growing threshold, a new 
neuron is inserted or the weight of the neuron is rippled out to neighbors. In GMixSOM, the 
identification of the BMU and the adaptation of map neurons during training are conducted 
via distance hierarchy so as to take the similarity information embedded in categorical data 
into consideration. 

3.1.1 Initialization phase 

(1) Five neurons arranged in a cross shape are initialized and their weights are assigned 
randomly. These initial neurons are ready for cross insertion in the growing phase. 

 

Input: an n-dimensional training dataset DS, a set of n distance hierarchies, the number of training epoch 
E, and spreading factor SF 

Output: a trained GMixSOM 
 

Initial phase 

Create five neurons and randomly assign their initial weights; 

Determine growing threshold GT by spreading factor SF; 

Growing phase 

For each training epoch 

Reset error of each neuron; 

Initialize learning rate and neighborhood size; 

For each input x in DS 

 Determine the best matching unit (BMU) of x; 

 Update BMU and its neighbors; 

 Increase the error of BMU; 

 Once the error of BMU is larger than GT, a new neuron will be added by cross insert or the 

error of BMU will be rippled outward; 

Repeat till all inputs have been presented 

Repeat till the epoch time equals to E 

 
 
(a) GSOM 
 
 

Figure 2:  The proposed GMixSOM training algorithm.

3.1 Process of GMixSOM

The training of a GMixSOM can be divided into two phases: initialization and growing, 
as shown in Fig. 2. In the initialization, a small-size map with random weights is created and 
growing threshold is determined. In the growing, training data are presented one by one to 
adjust the weight distribution of map neurons and meanwhile training errors are accumulated 
in neurons. When the accumulated error in a neuron exceeds the growing threshold, a new 
neuron is inserted or the weight of the neuron is rippled out to neighbors. In GMixSOM, the 
identification of the BMU and the adaptation of map neurons during training are conducted via 
distance hierarchy so as to take the similarity information embedded in categorical data into 
consideration.
3.1.1 Initialization phase
(1)  Five neurons arranged in a cross shape are initialized and their weights are assigned 

randomly. These initial neurons are ready for cross insertion in the growing phase.
(2)  Growing threshold GT is calculated by a predetermined spreading factor SF and data 
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dimensionality D as follow.
(2) Growing threshold GT is calculated by a predetermined spreading factor SF and data 

dimensionality D as follow. 

             (2) 

3.1.2 Growing phase 

(1) Training epoch 
In GMixSOM, we apply the epoch training process similar to that of Incremental Grid 

Growing (IGG) (Blackmore 1995) and the first two phases of GSOM (Alahakoon et al. 2000). 
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(3) Determine the best matching unit of each input
The BMU is identified by finding the closest neuron of which prototype m has the shortest 

distance with the n-dimensional input x. In essence, each categorical attribute value xi of x is 
mapped to a point at the leaf labeled by the same value in the hierarchy, like the point X in Fig. 
1a. The structure of GMixSOM ś prototype m is the same with that of GenSOM ś (Hsu 2006). 
Each component mi of prototype m consists of two parts, a symbol and a positive real value: (N, 
d) which can be mapped to a point in its associated hierarchy in the way that the point has an 
anchor of N and a distance of d to the root. Unlike that of an input attribute, the mapping point 
of mi can be at any position in the hierarchy, like the point M in Fig. 1a. 
(4) Update BMU and its neighbors

The BMU and its neighbors are updated with the learning rate and the neighborhood 
function as follows.
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iteration. i,x(t) is the neighborhood function and a Gaussian function is used for i,x(t) in this 
paper. wx(t) is the weight vector of the input. NBMU is the neighborhood of the BMU. 

(5) Increase the error of BMU 
The error of a BMU is accumulated by the error value, which is the difference between 

weight vectors of the BMU and the input x. The accumulated error of neuron is calculated as  
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where, Erri(t) and Erri(t+1) are the error of neuron i before and after recomputed at the tth 
iteration. x(t) and w(t) are the prototypes of input and neuron i. D is the number of total vector 
dimension. 

(6) The error of BMU is larger than GT 
Once the accumulated error of the BMU is larger than GT, insertion of a new neuron or 

reduction of the error takes place. If the BMU is a boundary neuron, a new neuron will be 
inserted into the map by cross insert and its weight vector will be initialized to match its 
neighborhood. If the BMU is a non-boundary neuron, the error of BMU will ripple outward 
to its immediate neighbors, instead of growing. The new weights are assigned as follows  
(Hsu et al. 2008). 
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where, ErrBMU(t) and ErrBMU(t+1) are the error of BMU before and after recomputed at the tth 
iteration. Errnbrs(t) and Errnbrs(t+1) are the error of BMU‟s neighbors before and after 
recomputed. nnbrs is the number of BMU‟s neighbors. 

(7) Repeat steps 3 - 6 till all inputs are presented. 
Add one to the epoch number after all inputs are presented to the training. 

(8) Start new epoch training till e = E 
If the epoch number is less than the number of total training epochs, then return to step 2 

to start a new training epoch. 

3.2 Cross insertion  

The number of starting neurons is four in the initialization phase of GSOM (shown in Fig. 
4a). When the error of BMU is larger than GT, one to four neurons will be inserted around a 
boundary BMU in GSOM (illustrated in Fig. 3). It is an essential process since the BMU is 
insufficient to represent its Voronoi region. However, redundant and unsuitable neurons will 
be inserted via this process and cost unnecessary effort to deal with in the growing phase. 

To avoid redundancy and save computation effort, we propose a new method for neuron 
insertion, called “cross insert”, to determine the most suitable location for the new neuron. In 
this study, the number of initial neurons is five as shown in Fig. 4b. The location of new 
neuron znew(t) is determined by 
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Fig. 4. Initial neurons of GSOM and GMixSOM. 

3.3 Clustering validity and mapping quality 

The SOM is an effective visualization tool for presenting topological relationship between 
high-dimensional data on a low-dimensional map. Similar data instances will be projected 
into the same neuron. That is, the instances projected in a neuron can be regarded as a cluster. 
Therefore, we apply clustering validity and mapping quality to verify the projection quality of 
the various SOM models mentioned in this paper. 

3.3.1 Mean squared error 

Generally, the competitive learning methods are usually based on minimizing the mean 
squared error (MSE) (Du 2010; Tsypkin 1973). Additionally, most clustering methods apply 
MSE as the index of clustering performance as well. Thus, we apply MSE to measure cluster 
validity as 
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where N is the number of total inputs, and ki is connection weight assigned to prototype ck 
with respect to xi, denoting the membership of the ith input into the kth neuron. When k is the 
winning neuron to xi, ki = 1 and ki = 0 otherwise. 
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Fig. 4. Initial neurons of GSOM and GMixSOM. 

3.3 Clustering validity and mapping quality 

The SOM is an effective visualization tool for presenting topological relationship between 
high-dimensional data on a low-dimensional map. Similar data instances will be projected 
into the same neuron. That is, the instances projected in a neuron can be regarded as a cluster. 
Therefore, we apply clustering validity and mapping quality to verify the projection quality of 
the various SOM models mentioned in this paper. 

3.3.1 Mean squared error 

Generally, the competitive learning methods are usually based on minimizing the mean 
squared error (MSE) (Du 2010; Tsypkin 1973). Additionally, most clustering methods apply 
MSE as the index of clustering performance as well. Thus, we apply MSE to measure cluster 
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where N is the number of total inputs, and μki is connection weight assigned to prototype 
ck with respect to xi, denoting the membership of the ith input into the kth neuron. When k is the 
winning neuron to xi, μki = 1 and μki = 0 otherwise.
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3.3.2 Within-between ratio
A good clustering method should generate clusters with small intra-cluster deviation 

(cluster compactness) and large inter-cluster separation (cluster separation). Another clustering 
validity index, considering both cluster compactness and cluster separation, was thus proposed 
to measure the performance of clustering as follows (Du et al. 2006).
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where the within-cluster scatter for cluster k, denoted by dWCS (ck) and the between-cluster 
separation for clusters k and l, denoted by dBCS(ck, cl), are calculated by Eqs. (16) and (17). 
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where nk is the number of data points in cluster k. ck and cl is the prototype of cluster k and l, 
respectively. The clustering objective is to minimize EWBR. 

3.3.3 Aggregation entropy 

For the data with class label, aggregation entropy can used to evaluate the extent of 
separation of different class labels to distinct clusters. A good clustering shall assign the data 
with the same class label to the same cluster rather than to different ones. The aggregation 
entropy is defined as follows. 
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where di,j and Di,j are the Euclidean distance between neuron i and j in data space and map 
space, respectively. The distance Di,j between inputs i and j shall be close to the distance di,j 
between the weights of neurons to which inputs i and j are projected. The smaller ESM the 
better quality the mapping has. When the applied mapping method utilizes geodesic distances 
instead of the Euclidean ones, the stress function is also evaluated using the geodesic distance 
calculation.  

4. EXPERIMENTS 

A testing platform in Java was built to demonstrate the performance of GMixSOM. One 
synthetic and one real dataset were used for the experiments. 

4.1 Synthetic dataset 

Synthetic dataset “stud nt” consists of three attributes, Department and Drink for 
categorical data and Amount for numeric data. According to categorical attributes, those 
students can be divided into nine groups as shown in Table 2. The value of attribute “Amount” 
is assigned by a normal distribution with pre-specified mean and standard deviation. The 
distance hierarchies for categorical data were shown in Fig. 5. 

A 1010 map was used for SOM and GenSOM. According to the suggestion in software 
package SOM_PAK (Kohonen et al. 1996), the initial LR, the initial NS, and the number of 
total training time were set to 0.5, 5, and 1000, respectively. Binary encoding was applied to 
convert categorical data into binary values prior to training the SOM. In the GSOM, the 
initial LR, initial NS, and SF were set to 0.95, 3 and 0.3, respectively. Binary encoding was 
applied to convert categorical data into binary value. In the GMixSOM, the number of total 
training epochs, initial LR, initial NS, and SF were set to 5, 0.95, 3 and 0.3 respectively.  

Table 2. Synthetic mixed-typ  datas t “Stud nt” 

Group Dept. Drink Amount (μ,σ) Count 
1 MIS Coke (500, 25) 60 
2 MBA Pepsi (400, 20) 30 
3 MBA Pepsi (300, 15) 30 
4 EE Latte (500, 25) 60 
5 CE Mocca (400, 20) 30 
6 CE Mocca (300, 15) 30 
7 SD Apple (500, 25) 60 
8 VC Orange (400, 20) 30 
9 VC Orange (300, 15) 30 
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where di,j and Di,j are the Euclidean distance between neuron i and j in data space and 
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di,j between the weights of neurons to which inputs i and j are projected. The smaller ESM the 
better quality the mapping has. When the applied mapping method utilizes geodesic distances 
instead of the Euclidean ones, the stress function is also evaluated using the geodesic distance 
calculation.

4. EXPERIMENTS

A testing platform in Java was built to demonstrate the performance of GMixSOM. One 
synthetic and one real dataset were used for the experiments.

4.1 Synthetic dataset

Synthetic dataset “student＂consists of three attributes, Department and Drink for 
categorical data and Amount for numeric data. According to categorical attributes, those students 
can be divided into nine groups as shown in Table 2. The value of attribute“Amount＂ is 
assigned by a normal distribution with pre-specified mean and standard deviation. The distance 
hierarchies for categorical data were shown in  Fig. 5.

A 10×10 map was used for SOM and GenSOM. According to the suggestion in software 
package SOM_PAK (Kohonen et al. 1996), the initial LR, the initial NS, and the number of 
total training time were set to 0.5, 5, and 1000, respectively. Binary encoding was applied to 
convert categorical data into binary values prior to training the SOM. In the GSOM, the initial 
LR, initial NS, and SF were set to 0.95, 3 and 0.3, respectively. Binary encoding was applied 
to convert categorical data into binary value. In the GMixSOM, the number of total training 
epochs, initial LR, initial NS, and SF were set to 5, 0.95, 3 and 0.3 respectively.

Table 2: Synthetic mixed-type dataset “Student”

Group Dept. Drink Amount (µ,σ) Count
1 MIS Coke (500, 25) 60
2 MBA Pepsi (400, 20) 30
3 MBA Pepsi (300, 15) 30
4 EE Latte (500, 25) 60
5 CE Mocca (400, 20) 30
6 CE Mocca (300, 15) 30
7 SD Apple (500, 25) 60
8 VC Orange (400, 20) 30
9 VC Orange (300, 15) 30
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Fig. 5. Concept hierarchies for “Stud nt”. 

As shown in Fig. 6a, the visualization map of GSOM obviously fails to represent the 
topological relationship between different groups in the mixed-type dataset. Several problems 
can be observed from the visualized results. I) Those inputs from different groups are 
projected to the same neuron. For example, inputs from group 5 and 6 are projected to the 
same neuron. II) Neurons holding the data from similar groups are not closer to each other 
than those holding the data from different groups. For example, neurons for group 8 and 9 are 
closer to that for group 1 than that for group 7. In fact, group 7, 8 and 9 should be closer to 
each other in accordance with the dataset. The reasons for the problems are that the binary 
encoding scheme which GSOM utilized cannot reflect the distance between categorical data 
appropriately. A more appropriate topological relationship between mixed-type data was 
revealed by the GenSOM in the resultant maps shown in Fig. 6b, those neurons holding 
similar data groups are closer than those holding different groups: groups 1, 2, and 3 are next 
to each other and so are groups 4, 5 and 6, as well as groups 7, 8 and 9. The result 
demonstrates that similarity relation embedded in categorical values can be preserved by 
means of the distance hierarchy mechanism which is used by the GenSOM and the 
GMixSOM. Nevertheless, the predetermined fixed map may cause the neurons close to the 
map border unavoidably take more inputs, some of which may significantly vary. In other 
words, border effect is resulted from the phenomenal that some inputs cannot find an 
appropriate BMU and have to select one from those neurons near the border of the map.  

GMixSOM can reflect correct topological relationship among the groups in the 
visualization map (shown in Fig. 6c) contrast to GSOM and GenSOM. Inputs from different 
groups can be projected to appropriate neurons in the sense that those similar groups can be 
closer than different groups. Groups 1, 2 and 3 are projected to one region, and so are groups 
4, 5 and 6 as well as groups 7, 8 and 9. The experiment demonstrated that GMixSOM can 
yield a more feasible and appropriate visualization map than GenSOM and GSOM with 
respect to mixed-type data. 
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Figure 5:  Concept hierarchies for “Student”

As shown in Fig. 6a, the visualization map of GSOM obviously fails to represent the 
topological relationship between different groups in the mixed-type dataset. Several problems 
can be observed from the visualized results. I) Those inputs from different groups are projected 
to the same neuron. For example, inputs from group 5 and 6 are projected to the same neuron. II) 
Neurons holding the data from similar groups are not closer to each other than those holding the 
data from different groups. For example, neurons for group 8 and 9 are closer to that for group 1 
than that for group 7. In fact, group 7, 8 and 9 should be closer to each other in accordance with 
the dataset. The reasons for the problems are that the binary encoding scheme which GSOM 
utilized cannot reflect the distance between categorical data appropriately. A more appropriate 
topological relationship between mixed-type data was revealed by the GenSOM in the resultant 
maps shown in Fig. 6b, those neurons holding similar data groups are closer than those holding 
different groups: groups 1, 2, and 3 are next to each other and so are groups 4, 5 and 6, as well 
as groups 7, 8 and 9. The result demonstrates that similarity relation embedded in categorical 
values can be preserved by means of the distance hierarchy mechanism which is used by 
the GenSOM and the GMixSOM. Nevertheless, the predetermined fixed map may cause the 
neurons close to the map border unavoidably take more inputs, some of which may significantly 
vary. In other words, border effect is resulted from the phenomenal that some inputs cannot find 
an appropriate BMU and have to select one from those neurons near the border of the map. 

GMixSOM can reflect correct topological relationship among the groups in the 
visualization map (shown in Fig. 6c) contrast to GSOM and GenSOM. Inputs from different 
groups can be projected to appropriate neurons in the sense that those similar groups can be 
closer than different groups. Groups 1, 2 and 3 are projected to one region, and so are groups 
4, 5 and 6 as well as groups 7, 8 and 9. The experiment demonstrated that GMixSOM can yield 
a more feasible and appropriate visualization map than GenSOM and GSOM with respect to 
mixed-type data.
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Figure 5:  Visualized results for “Student”.
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4.2 Real dataset 

“Adult” is a real-world mixed-type dataset which comes from the UCI repository 
(Asuncion et al. 2007). The dataset contains 48,842 instances with 15 attributes including 
eight categorical and six numeric attributes. Each data instance has a class label, indicating 
whether the house old‟s salary is over 50K. About 76% of the data are of less than 50K, only 
24% are of over 50K. A subset including 10,000 instances were sampled randomly from the 
dataset. Seven relevant attributes according to (Hsu 2006), including three categorical 
attributes Marital_status, Relationship, and Education; and four numeric attributes, 
Capital_gain, Capital_loss, Age, and Hours_per_week, were used for the experiment. The 
manually-constructed concept hierarchies for categorical attributes were shown in Fig. 7. 
GSOM, GenSOM and GMixSOM retained the same parameters setting as the last 
experiment. 

The resultant visualization maps by the three methods are shown in Fig. 8 and Fig. 9. The 
size of the pies reflects the number of data instances projected in the neuron. The color of the 
pie slice represents the class of the data. The yellow color indicates salary >50K while the red 
indicates <50K. The resultant visualization maps of GenSOM is shown in Fig. 8a. Since the 
GenSOM used a predetermined fixed-size map, the border neurons cannot but take many 
inputs of which some may be projected to other extra neurons shall the map size have been 
larger. Consequently, border neurons may contain more inputs than expected and result in a 
high error value than those neurons in the other areas due to border effect. Contrast to the 
GenSOM, the border neurons will not take irrelevant inputs in the GMixSOM with an 
extendable structure. Every GMixSOM neuron can share the error to its neighbors via neuron 
insertion and ripple outward when its accumulated error exceeds the threshold during training. 
In addition, GMixSOM can obtain a lower MSE than GenSOM under the same map size as 
shown in Fig. 8b. 

As shown in Fig. 9, The GSOM generated only 16 neurons and the projection result failed 
to generate a sufficient gap between different groups to distinguish those boundaries of 
potential clusters on the map since those neurons were not enough for distributing different 
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4.2 Real dataset

“Adult＂is a real-world mixed-type dataset which comes from the UCI repository  
(Asuncion et al. 2007). The dataset contains 48,842 instances with 15 attributes including eight 
categorical and six numeric attributes. Each data instance has a class label, indicating whether 
the household´s salary is over 50K. About 76% of the data are of less than 50K, only 24% 
are of over 50K. A subset including 10,000 instances were sampled randomly from the dataset. 
Seven relevant attributes according to (Hsu 2006), including three categorical attributes Marital_
status, Relationship, and Education; and four numeric attributes, Capital_gain, Capital_loss, 
Age, and Hours_per_week, were used for the experiment. The manually-constructed concept 
hierarchies for categorical attributes were shown in Fig. 7. GSOM, GenSOM and GMixSOM 
retained the same parameters setting as the last experiment.

The resultant visualization maps by the three methods are shown in Fig. 8 and Fig. 9. The 
size of the pies reflects the number of data instances projected in the neuron. The color of the 
pie slice represents the class of the data. The yellow color indicates salary >50K while the red 
indicates <50K. The resultant visualization maps of GenSOM is shown in Fig. 8a. Since the 
GenSOM used a predetermined fixed-size map, the border neurons cannot but take many inputs 
of which some may be projected to other extra neurons shall the map size have been larger. 
Consequently, border neurons may contain more inputs than expected and result in a high error 
value than those neurons in the other areas due to border effect. Contrast to the GenSOM, the 
border neurons will not take irrelevant inputs in the GMixSOM with an extendable structure. 
Every GMixSOM neuron can share the error to its neighbors via neuron insertion and ripple 
outward when its accumulated error exceeds the threshold during training. In addition, 
GMixSOM can obtain a lower MSE than GenSOM under the same map size as shown in Fig. 
8b.

As shown in Fig. 9, The GSOM generated only 16 neurons and the projection result 
failed to generate a sufficient gap between different groups to distinguish those boundaries of 
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potential clusters on the map since those neurons were not enough for distributing different 
inputs to appropriate neurons in accordance with their diversity. Contrary to the GSOM, under 
the same parameters GMixSOM yielded sufficient neurons. The resultant map spread out and 
data instances were projected to appropriate neurons according to their characteristics. Closely 
inspecting the map, we discovered that the instance with salary >50K mainly located at the 
upper-left region. In particular, some of those neurons are in yellow without any slice in red, 
indicating all of the instances in the neurons are of salary >50K. The instances projected in the 
neurons in the lower-right region are mainly with salary <50K, that is, the slice in red occupies 
the major portion of the pie.  
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out and data instances were projected to appropriate neurons according to their characteristics. 
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red, indicating all of the instances in the neurons are of salary >50K. The instances projected 
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Figure 7:  Concept hierarchies for “Adult”.
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Figure 8:  Visualized result and MSE of GenSOM for “Adult”.
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Figure 9:  Visualized results of GSOM and GMixSOM for “Adult”.
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Furthermore, we applied a variety of spreading factors SF to verify the effectiveness of 
GMixSOM. As the results shown in  Fig. 10a, the MSE of GMixSOM is obviously lower than 
GSOM because GMixSOM could provide enough neurons to avoid under-representation of 
Voronoi region in the growing phase. Additionally, the Within-Between Ratio, as shown in  Fig. 
10b, demonstrates that GMixSOM could also consider both cluster compactness and cluster 
separation. For the aggregation entropy of both methods as shown in Fig. 10c, GMixSOM can 
decrease linearly but GSOM increases and slightly fluctuates as SF increases. As the Sammon 
stress shown in Fig. 10d, GMixSOM provides better mapping quality than GSOM and mapping 
quality improves as the SF increases. The result indicates that the map quality can be controlled 
as user ś specified SF in GMixSOM but GSOM. In summary, GMixSOM can provide a better 
spread-out control for different SFs according to user ś need.

Furthermore, we applied a variety of spreading factors SF to verify the effectiveness of 
GMixSOM. As the results shown in Fig. 10a, the MSE of GMixSOM is obviously lower than 
GSOM because GMixSOM could provide enough neurons to avoid under-representation of 
Voronoi region in the growing phase. Additionally, the Within-Between Ratio, as shown in 
Fig. 10b, demonstrates that GMixSOM could also consider both cluster compactness and 
cluster separation. For the aggregation entropy of both methods as shown in Fig. 10c, 
GMixSOM can decrease linearly but GSOM increases and slightly fluctuates as SF increases. 
As the Sammon stress shown in Fig. 10d, GMixSOM provides better mapping quality than 
GSOM and mapping quality improves as the SF increases. The result indicates that the map 
quality can be controlled as user‟s specified SF in GMixSOM but GSOM. In summary, 
GMixSOM can provide a better spread-out control for different SFs according to user‟s need.  
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Fig. 10. Performance of two methods in different SF. 
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initial NS and total epoch time, were verified via several experiments. In these experiments, 
all the foregoing parameters setting remained the same except for the specified parameter 
which was under testing. As shown in Fig. 10a, the change of MSE is quite slight even the 
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Parameter setting plays a crucial role for influencing the performance of final results in 
most algorithms. Therefore, sensitivities of four major parameters, including SF, initial LR, 
initial NS and total epoch time, were verified via several experiments. In these experiments, 
all the foregoing parameters setting remained the same except for the specified parameter 
which was under testing. As shown in Fig. 10a, the change of MSE is quite slight even the map 
size grows as SF increases. MSE did not fluctuate as the map size increase. The boundary of 
clusters may be identified more clearly as SF increases. Additionally, MSE shrunk as initial 
LR and NS increase (as shown in Fig. 11a and b). Generally speaking, the update ratio and 
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range were determined by the initial LR and NS, respectively. Higher initial LR makes neurons 
move toward inputs in a short time. The update range of BMU ś neighbors will be enlarged via 
a higher initial NS. As a result, more neurons can be updated under a larger NS. The results 
indicate that higher initial LR and NS make better resultant maps, which is consistent with the 
suggestion of parameters setting seen in the literature of the SOMs.

Finally, the influence of total epoch time (E) was verified in two different intervals. In 
the first interval, the total epoch time was set from 1 to 10 with a step of 1 to obtain a variety 
of resultant maps. As the results shown in Fig. 11c, MSE swiftly decreased from E = 1 to E = 
5 and became slightly decreasing after E = 5. The outcome demonstrated quantization error of 
existing neurons can be smoothed out via the next epoch in the training. In the second interval, 
the total epoch time was set from 5 to 100 with a step of 5. According to the trend of MSE 
changing (shown in Fig. 11d), MSE swiftly decreased from E = 5 to E = 20 and became slightly 
decreasing from E = 20 to E = 55. Finally, GMixSOM reached convergent status since MSE 
retained a stable value after E = 60. The result showed that GMixSOM can reach convergence 
as the epoch increases. However, it seems unnecessary to spend tremendous effort for a little 
gain. According to the MSE trend in this case, GMixSOM becomes relative stable when E = 5. 
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slightly decreasing from E = 20 to E = 55. Finally, GMixSOM reached convergent status 
since MSE retained a stable value after E = 60. The result showed that GMixSOM can reach 
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stable when E = 5. 

   

 (a) MSE in different initial LR. (b) MSE in different initial NS. 

   

 (c) MSE in the first interval. (d) MSE in the second interval. 

Fig. 11. MSE for GMixSOM in different parameter setting 
Figure 11:  MSE for GMixSOM in different parameter setting

4.4 Application to catalogue marketing
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To demonstrate practical value of analysis result, we apply the result to catalog marketing. 
We first cluster the data according to the projection of GMixSOM and then analyze the sales 
profit of catalogue marketing based on the clustered data compared with that based on random 
sampling. 

The clustering was performed automatically upon the projected GMixSOM map by using 
DBSCAN clustering algorithm (Ester et al. 1996) These projected neurons were clustered to 
eight clusters without any noise (neuron) under automatic cluster searching. In this case, the 
expected number of cluster and the minPts (minimum number of points) were set to 8 and 2, 
respectively. Then, the radius parameter Eps started from 0.5 and was iteratively adjusted till the 
number of cluster was equal to the expected value or reached a stable value without change on 
the number of clusters. At the final, eight clusters were obtained with Eps = 1.414 as shown in 
Fig. 12a. The cluster numbers were superimposed to indicate the cluster ś location.

 Table 3 shows the distribution of Salary >50 K in individual clusters sorted by descending 
percentage of >50K. Obviously, Cluster 8 has the highest >50K ratio (100%) which is far 
exceeding the overall distribution (23.82%). It has 32% of Education value Prof-school, 100% 
of Marital_status value Married-civ-spouse (MCS), 97% of Relationship value Husband, 
an average of 46 years old in age, about 50 in Hours_per_week, 99,999 in capital_gain, and 
an average of zero in capital_loss. In fact, the result shows that the percentage of >50K in 
individual clusters are all significantly different from the overall distribution, demonstrating that 
the projection and the clustering are effective regarding separating the data according to their 
characteristics.

For catalogue marketing, the richer groups, which have a larger portion of >50 K, shall 
have higher priority of receiving promotional catalogues. We assume that the cost of mailing a 
catalogue is NT$2 and an average profit of NT$10 per person can be collected if the person ś 
salary is over 50K, and otherwise an average profit of NT$1. Fig. 12b shows the expected 
profits of the catalogue marketing under this setting. The profits shown on the upper line are 
calculated based on the clusters of the dataset segmented by our method, in which the richer 
groups have higher priority of receiving the catalogues. We get the maximum expected profit 
of NT$13,808 upon mailing to the first three groups, i.e., 8, 1 and 5, representing a collection 
of 5,002 customers. In contrast, the profits shown on the lower line were calculated according 
to random selection, in which customers for receiving the catalogues were randomly drawn. 
The expected profit reaches the maximum of NT$11,438 when all the customers are included 
in the mailing list. This simulation shows that GMixSOM can segment customer data to further 
help decision maker identify better candidates for catalogue marketing and raise promotion 
effectiveness.
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 (a) Clustered projected map  (b) The expected profit 

Fig. 12. Clustered projected GMixSOM map via DBSCAN and the expected profit of catalogue marketing 

 
Table 3. The distribution of Salary attribute in each cluster 

C Education (%) Marital status (%) Relationship (%) Age Hrs Gain Loss >50K 
(%) Count 

8 Prof-school(32) MCS(100) Husband(97) 46 50 99,999 0 100  38 
1 HS-grade(31) MCS(96) Husband(85) 43 40 911 121 42  4,798 
5 Bachelors(61) Divorced(59) Not-in-family(78) 37 42 1,197 96 19  166 
4 Some-college(59) Never-married(66) Not-in-family(100) 38 40 935 46 10  1,018 
2 HS-grade(52) Never-married(64) Own-child(37) 36 43 549 57 6  1,892 
6 HS-grade(87) Divorced(77) Unmarried(77) 44 40 618 19 5  227 
3 Some-college(62) Never-married(70) Own-child(45) 30 36 283 65 4  1,226 
7 HS-grade(91) Never-married(53) Not-in-family(100) 35 42 445 37 4  635 

All HS-grade(33) MCS(47) Husband(41) 39 41 1,113 86 24 10,000 

5. CONCLUSIONS 

To facilitate analysis of complex business data for decision making, a growing mixed 
SOM, integrating distance hierarchy and dynamic structure concept, is proposed to 
manipulate mixed-type data and improve the visualization result of GSOM. The model can 
provide a dynamic structure to generate a flexible map according to nature of the data and 
faithfully present the topological relationship between mixed-type data via distance hierarchy. 

In addition, we applied only the first two phases of the original GSOM training algorithm 
excluding its smoothing phase but achieved similar smoothing effect by using epoch training. 
By means of epoch training, the resultant map in fact obtains better smoothing out effect than 
that of GSOM. Furthermore, cross insert is proposed to determine the most suitable location 
for adding new neurons without expensive computation. The scheme avoids redundant 
neurons being freely added to neighboring positions of BMU and saves the effort for 
processing redundant neurons. Furthermore, GMixSOM could reach convergent status as the 
epoch time increases and the performance of clustering and mapping could be improved as 
SF increases. 

According to the results of experiments, we demonstrate that GMixSOM generates more 
appealing visualization result for high-dimensional mixed-type data than GSOM. Moreover, 

Figure 12:  Clustered projected GMixSOM map via DBSCAN and the expected profit 
of catalogue marketing
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7 HS-grade(91) Never-married(53)  Not-in-family(100) 35 42 445 37 4 635

All HS-grade(33) MCS(47) Husband(41) 39 41 1,113 86 24 10,000

5. CONCLUSIONS

To facilitate analysis of complex business data for decision making, a growing mixed SOM, 
integrating distance hierarchy and dynamic structure concept, is proposed to manipulate mixed-
type data and improve the visualization result of GSOM. The model can provide a dynamic 
structure to generate a flexible map according to nature of the data and faithfully present the 
topological relationship between mixed-type data via distance hierarchy.

In addition, we applied only the first two phases of the original GSOM training algorithm 
excluding its smoothing phase but achieved similar smoothing effect by using epoch training. 
By means of epoch training, the resultant map in fact obtains better smoothing out effect than 
that of GSOM. Furthermore, cross insert is proposed to determine the most suitable location 
for adding new neurons without expensive computation. The scheme avoids redundant neurons 
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being freely added to neighboring positions of BMU and saves the effort for processing 
redundant neurons. Furthermore, GMixSOM could reach convergent status as the epoch time 
increases and the performance of clustering and mapping could be improved as SF increases.

According to the results of experiments, we demonstrate that GMixSOM generates 
more appealing visualization result for high-dimensional mixed-type data than GSOM. 
Moreover, both clustering validity and mapping quality of GMixSOM are superior to those 
of GSOM as well. Therefore, the proposed GMixSOM can offer a feasible solution for an 
effective visualization means in high-dimensional mixed-type data analysis. An application of 
clustering results of a real-world mixed-type data to catalogue marketing was also presented to 
demonstrate the practical value of the proposed model as a data analysis tool. 
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