
資訊管理學報　第十六卷　第四期 141

Using Reversible Steganography Algorithm to

Embed Metadata in Vector Maps

Sheng-Ming Wang

Department of Information Science and Management System, National Taitung University

Fu-Mei Chen

Department of Information Management, National Dong Hwa University

Kai-Wei Chen

Department of Computer Science and Engineering, National Chung Hsing University

Wei-Pang Yang

Department of Information Management, National Dong Hwa University

Abstract
Vector maps are the fuel of many Geographic Information System (GIS) applications.

Metadata, which is the data about vector maps, are introduced to provide the details of the vector

maps. The usage of metadata is still facing some problems. Especially the storage of metadata is

a problem that needs to be resolved. This paper presents an internal metadata storage mechanism

for solving metadata storage problem by using a reversible steganographic algorithm to embed

metadata in vector maps. Experimental results show that this method provides a solution for

metadata embedding with high capacity but low distortion. The capacity of metadata embedding

is 2(n-2) bits, where n is the amount of vertices of vector maps. To the best of our knowledge,

our method provides the highest capaicty achieved in the literature of steganograhy for vector

maps. In considering to the capacity required by the metadata elements of ISO 19115 metadata

standard that we have adapted in this paper, a vector map should has at least 5458 vertices so

that all mandatory and conditional metadata elements can be embedded in the vector map. Since

the conditional elements should not be embedded alone, a vector map should has at least 1998

vertices so that the mandatory metadata elements can be embedded and integrated with the

vector map. Experimental results also show that there is an insignificantly difference between

the original and the recovery map, which is less than 3.41E-11 of the root mean square error

(RMSE) and is imperceptible to the human visual system. Surely, the accuracy of recovery

maps satisfies the requirements of all GIS applications development. Meanwhile, our method is

資訊管理學報　第十六卷　第四期142

robust against the affine transformation including translation, rotation, uniform scaling, and their

combinations.

Key words : metadata, steganographic algorithms, vector maps, embedding capacity,

reversible.

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 143

應用可逆式資料隱藏法將後設資料嵌入於向量地圖

王聖銘

國立台東大學資訊管理學系

陳富美

國立東華大學資訊管理學系

陳凱威

國立中興大學資訊科學研究所

楊維邦

國立東華大學資訊管理學系

摘要

向量地圖（Vector Maps）是很多地理資訊系統（GIS）發展與應用的基礎。向量地
圖的後設資料（Metadata）除提供該地圖相關的詳細資料外，也是GIS發展中非常重要
的參考資料。雖然後設資料的應用已有既定的基礎，但卻仍存在一些問題，尤其是其資

料儲存的問題。本研究提出一個應用可逆式資料隱藏演算法，可將後設資料嵌入向量地

圖。研究結果顯示，本研究可於向量地圖中嵌入2（n-2）位元的資料量，其中n代表此
向量地圖的頂點數。與其它已知的研究成果相比，我們所提的方法具有最高的資料嵌入

量。而本研究實驗結果顯示，一個向量地圖最少要有5458個頂點數，才能將完整的嵌入
本研究所採用的ISO 19115後設資料標準中的所有項目。而最少要有1998頂點數，才能嵌
入該標準所訂定的主要後設資料項目。實驗結果也顯示，本研究將後設資料擷取出來後

的復原圖與原始圖間僅有肉眼所無法分辨出來的3.41E-11的RMSE誤差量。此結果可滿足
任何GIS應用與發展上的精度需求。另我們的方法也具其強韌度，可抗拒外在平移、旋
轉、等量縮放，以及其組合性的攻擊。

關鍵字：��後設資料、資料隱藏演算法、向量地圖、訊息容量、可逆式

資訊管理學報　第十六卷　第四期144

1. INTRODUCTION

Ggeographical information data and services are becoming accessible in various new
forms and through a wide range of applications as well as new classes of devices (Wang & Chen
2008). As the technology develops we need to discuss the potentials, problems and technical
issues of emerging development trends of geographic information data and services (Goodchild
et al. 1997；Mnzis 2000). Recently, online interactive mapping systems are growing in
popularity (Fisher 2007；Kaasinen 2003；Tan et al. 2008；Zhang et al. 2008). The evolutions
of mashup of different Web Service and data resources have flourished the applications of
geographic information systems (GISs). A mashup is a kind of mechanism that combines two or
more separate data streams to create application content (Yu et al. 2008). Already, hundreds of
mashups overlay maps with everything from such practical information as gas station locations,
rice fields, hurricane movements, hot springs sites and crime statistics (Butler 2006). Nowadays,
online mapping mashup is evolving into a nexus of technologies and communities that is
changing the fundamental use of the Internet, as well as redefining the concept of vector maps
used in various applications (Goodman & Moed 2006).

Vector maps, which emphasize spatial variation of one or a small number of geographic
distributions, are used to display spatial pattern of a theme or series of attributes. These
patterns may be physical phenomena such as administration boundary and climate or human
characteristics such as population density and village place. Vector maps are the most important
component in an online mapping mashup service system, because they are the fuel of the other
layers. Hence, it is important to know the details, such as copyright, scale, quality, accuracy,
specifications, date, and usage limitation of these vector maps.

Metadata, which is the data about vector maps, are introduced to provide the details of
vector maps. For example, users need metadata to locate appropriate data sets. Meanwhile,
metadata provides information about the data available within an organization or from catalog
services, clearinghouses, or other external sources. In the data quality issue, metadata not
only helps find data, but once data has been found, it also tells how to interpret and use data.
Furthermore, publishing metadata will facilitate data sharing. The data sharing mechanism is the
core of online mapping mashup service system (Gunther & Voisard 1998).

The Importance of metadata for GIS application development has been emphasized in
many literatures (Boll et al. 1998；Gunther & Voisard 1998；Kashyap & Sheth 1996；Turner
2004). There are also metadata standards been created and implemented (Federal Geographic
Data Committee (FGDC) 2006, International Organization for Standardization (ISO) 2003).
However, the usage of metadata is still facing some problems. The first problem occurs because
the domain of vector maps is too wide for any single standard to give an ultimate solution to

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 145

it. Furthermore, the storage of metadata is another problem that needs to be resolved. There
are two kinds of metadata storage: external and internal storing. In external storing, which
nowadays is used by vector maps in GISs, metadata is stored in a separate file from the actual
data content. Although, this allows better use of metadata in dedicated metadata management
servers. These database servers can then search and store metadata information and only have
references to the actual data. It is that the vector map is not guaranteed to exist and this easily
leads to the situation where metadata server contains lots of ghost records, that does not have
the corresponding content anywhere on the Web available or at least the record can not help to
find it. The situation will cause serious defects while implementing data mashup.

For solving the problem, an internal storing mechanism to embed metadata in the same
vector map is proposed in this paper to store metadata in the same file as the data and is
thus also available if the data itself is available. This paper presents a mechanism by using a
reversible steganographic algorithm to embed metadata in vector maps with high capacity but
low distortion. In our approach, we can achieve the embedding capacity of 2(n-2) bits where
n is the vertex numbers of a vector map. To the best of our knowledge, our capacity is much
higher than that can provide by the current state of the art reversible steganography algorithms
for vector maps, such as shown in several researches (Shao et al. 2006；Voigt et al. 2004；
Wang et al. 2007). In addition, we only need to record extra little information to restore original
coordinate value with insignificant distortion that is within the standard vector map accuracy.

We arrange the remains of this paper as follows. Section 2 surveys related works. We
present details of our algorithm including the data embedding and data extracting processes in
section 3 and 4, respectively. Section 5 gives experimental results. Conclusions and future works
are described in the final section.

2. RELATED WORKS

To the best of our knowledge few works have been done on using reversible steganography
algorithm to integrate metadata with vector maps. Most of them are focusing on embedding
secret message to 2D vector maps (Chen et al. 2007；Shao et al. 2006；Voigt et al. 2004；
Wang & Wang 2006) or images (Kim et al. 2008；Tian 2003). Hence the section will begin
with an overview of steganography techniques. Further discussion will focus on steganography
techniques that apply to vector maps. Finally, the metadata standards and applications, especially
for vector maps used in GIS applications will be reviewed.

2.1 Steganography Overview

Steganography is the art and science of communicating in such a way that it hides the
existence of the secret message during mutual communication. The main goal of steganography

資訊管理學報　第十六卷　第四期146

is to hide a secret message S in a cover medium D, to produce a stego medium D', practically
indistinguishable from D by people, in such a way that an eavesdropper cannot detect the
presence of S in D'. On the contrary, the main goal of watermarking is to embed watermarks W
in the host medium D to obtain a watermarked medium D' in such a way that an attacker cannot
remove or replace W in D'.

Bogomjakov have defined that steganography (or, more simply, data-hiding) is the
science of hiding messages in media in such a way that even the existence of the message
remains undetected to all but the recipient (Bogomjakov et al. 2008). In the aspect of secret
communication, steganography is defined as the art and science of communicating in a way
which hides the existence of the communication. In the other word, steganography is the
technique of hiding secret messages or data within other media to all eyes except those of the
sender and intended receiver (Kahn 1996).

Petitcolas mentioned that (Petitcolas et al. 1999), there has been a growing interest, by
different research communities, in the fields of steganography, digital watermarking and
fingerprinting. This led to some confusion in the terminology. However, Pfitzmann (1996) has
proposed a classification of information hiding techniques as shown in Figure 1. According to
the figure, the purpose of steganography is having a covert communication between two parties
whose existence is unknown to possible attackers; a successful attack consists in detecting
the existence of this communication. Copyright marking, which is the root of watermarking
techniques, has the additional requirement of robustness against possible attacks.

watermarking and fingerprinting. This led to some confusion in the terminology.
However, Pfitzmann (1996) has proposed a classification of information hiding
techniques as shown in Figure 1. According to the figure, the purpose of
steganography is having a covert communication between two parties whose
existence is unknown to possible attackers; a successful attack consists in detecting
the existence of this communication. Copyright marking, which is the root of
watermarking techniques, has the additional requirement of robustness against
possible attacks.

Figure 1 A classification of information hiding techniques (Pfitzmann 1996)

Popa (Cummins et al. 2004；Popa 1998) had proposed another diagram shown in
Figure 2. The diagram shows that two general directions are distinguished within
steganography: protection against detection and protection against removal. Protection
against detection is achieved using schemes that do not modify in a visible way the
original unmarked object; the modifications are not visible by the humans or by the
computers. Protection against removal supposes that the scheme should be robust to
common attacks; it is impossible to remove the hidden data without degrading the
object’s quality and rendering it useless.

According to Figure 2, steganography can be used to hide a message intended
for later retrieval by a specific individual or group. In this case, the aim is to prevent
the message being detected by any other party. The other major area of steganography
is copyright marking, where the message to be inserted is used to assert copyright
over a document. This can be further divided into watermarking and fingerprinting.

 5

Figure 1: A classification of information hiding techniques (Pfitzmann 1996)

Popa (Cummins et al. 2004；Popa 1998) had proposed another diagram shown in Figure
2. The diagram shows that two general directions are distinguished within steganography:
protection against detection and protection against removal. Protection against detection is
achieved using schemes that do not modify in a visible way the original unmarked object; the
modifications are not visible by the humans or by the computers. Protection against removal

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 147

supposes that the scheme should be robust to common attacks; it is impossible to remove the
hidden data without degrading the object's quality and rendering it useless.

According to Figure 2, steganography can be used to hide a message intended for later
retrieval by a specific individual or group. In this case, the aim is to prevent the message being
detected by any other party. The other major area of steganography is copyright marking, where
the message to be inserted is used to assert copyright over a document. This can be further
divided into watermarking and fingerprinting.

watermarking and fingerprinting. This led to some confusion in the terminology.
However, Pfitzmann (1996) has proposed a classification of information hiding
techniques as shown in Figure 1. According to the figure, the purpose of
steganography is having a covert communication between two parties whose
existence is unknown to possible attackers; a successful attack consists in detecting
the existence of this communication. Copyright marking, which is the root of
watermarking techniques, has the additional requirement of robustness against
possible attacks.

Figure 1 A classification of information hiding techniques (Pfitzmann 1996)

Popa (Cummins et al. 2004；Popa 1998) had proposed another diagram shown in
Figure 2. The diagram shows that two general directions are distinguished within
steganography: protection against detection and protection against removal. Protection
against detection is achieved using schemes that do not modify in a visible way the
original unmarked object; the modifications are not visible by the humans or by the
computers. Protection against removal supposes that the scheme should be robust to
common attacks; it is impossible to remove the hidden data without degrading the
object’s quality and rendering it useless.

According to Figure 2, steganography can be used to hide a message intended
for later retrieval by a specific individual or group. In this case, the aim is to prevent
the message being detected by any other party. The other major area of steganography
is copyright marking, where the message to be inserted is used to assert copyright
over a document. This can be further divided into watermarking and fingerprinting.

 5

Figure 2: Two general directions distinguished within steganography (Popa 1998)

Furthermore, we compare the differences between steganography and encryption. Although
they are both used to ensure data confidentiality, the main difference between them is that with
encryption anybody can see that both parties are communicating in secret. Steganography
hides the existence of a secret message and in the best case nobody can see that both parties
are communicating in secret. This makes steganography suitable for some tasks for which
encryption aren't, such as data embedding. Adding encrypted copyright information to a file
could be easy to remove but embedding it within the contents of the file itself can prevent it
being easily identified and removed.

2.2 Reversible Steganography on Vector Maps

In computer-based steganography, digital media file, such as images, audio, and 3D models,
are used as innocuous-looking hosts for embedding secret messages. There are plenty of ways
to hide messages within images. This is because an image, being a raster data structure with
array of pixels, typically contains an enormous amount of redundant information. In contrast to
raster data structure, vector map is a data structure uses sequences of coordinates to represent
points, lines, and polygons on a map. It is not easy to hide messages within vector maps, since
each of these units is composed simply as a series of one or more coordinate points and have
no redundant information being stored. In addition, hiding data in vector maps will generally
induce some distortions to the coordinates of the vector data (Wang et al. 2007). Meanwhile,

資訊管理學報　第十六卷　第四期148

due to the strict GIS application requirements on accuracy of vector maps, modifications to map
data are generally undesired. Therefore, as pointed out by Chen (Chen et al. 2007), reversible
schemes are required for applying steganography in vector maps because the distortion can be
removed after hiding data been extracted.

There are some works have been done on data hiding with vector maps. Voigt (Voigt et al.
2004) first proposed the method of reversibly hiding data in vector maps. They hide the data
by modifying the integer discrete cosine transform mechanism seems to be complex and the
data hiding capacity is low in this method. Schulz and Voigt (Schulz & Voigt 2004) proposed a
non-reversible data hiding scheme with capacity of 0.1 bit per vertex. Wang (Wang et al. 2007)
proposed two reversible data hiding schemes for vector maps based on difference expansion
under the concept of watermarking techniques. The first one is coordinate-based scheme where
the correlation of map coordinates is utilized for data hiding. The hidden data are embedded by
changing the coordinate differences between the adjacent vertices of the map. The scheme can
achieve the highest capacity of 0.279 bit/vertex with RMSE value of 0.00295 in the maps with
dense vertices whereas the performance could be seriously decreased for those maps whose
coordinates exhibit low correlation. The second scheme uses the Manhattan distances between
adjacent vertices as the cover data to implement a distance-based scheme. The distance-based
scheme can achieve the highest capacity of 0.262 bit/vertex with RMSE value of 0.00055 and
is suitable for the maps whose extracted distances exhibit high correlation. Chen (Chen et
al. 2007) proposed a reversible data hiding algorithm for vector maps in spatial domain. The
algorithm performs high data capacity where the distortion rate is under 0.02%. In this paper, we
use Chen's algorithm as a base for developing our method to embed metadata in vector maps.

In our approach, we first adopt PCA to produce two principal axes of the 2D vector map.
Next, we sort vertices according to coordinate values of two axes. We then use multi-layer
concept to classify the two sorting axes: the odd sorting list and even sorting list. The coordinate
value of the modulation is individually embedded into the odd or even sorting lists. In this
method we can not only extracting data, but also recover to the original coordinate value while
extracting the information. In our approach, we can embed a bit in each interval. Hence we can
embed 2(n-2) bits of data where n is the vertex numbers of a vector map. In addition, we only
need to record extra little information to restore original coordinate value.

2.3 Metadata Standard and Definition

 Metadata is defined as "data about data". Metadata of vector maps provide the background
information of the content, quality, condition, and other appropriate characteristics of the
vector maps. The International Organization for Standardization (ISO) proposes several closely
related definitions, such as data for describing and documenting data; data about datasets and
usage aspects of it; and data about the content, quality, condition, and other characteristics of

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 149

data (International Organization for Standardization (ISO) 2003). These definition is similar
to that proposed by Federal Geographic Data Committee (FGDC) (Federal Geographic Data
Committee (FGDC) 2006).

In GIS applications, metadata is a formal documentation describing the characteristics of
a specific geospatial data set. For example, metadata may describe the details of vector maps
include: what it is about, where it is to be found, what is the quality of the data for a specified
purpose, what spatial location does it cover and over what time period, when and where the data
was collected and by whom, what purposes the data has been used for, and what related data
sets are available. In general, metadata should at least include dataset names with descriptions of
what they contain, coordinate system and datum, theoretical accuracy, source document names
with dates and scales, data conversion methods, update history, lists of field names and what
they contain, and keys to any codes used in these fields.

ISO 19115:2003 (2003) has formally defined the schema required for describing
geographic information and services(International Organization for Standardization (ISO)
2003). It provides information about the identification, the extent, the quality, the spatial and
temporal schema, spatial reference, and distribution of digital geographic data. It also defines
mandatory and conditional metadata sections, entities, and elements. The details of ISO 19115
core metadata elements are shown in Table 1

Table 1: ISO 19115 Core Metadata Elements

Mandatory Elements Conditional Elements

1. Dataset title
2. Dataset reference date
3. Dataset language
4. Dataset topic category
5. Abstract
6. Metadata point of contact
7. Metadata date stamp

1. Dataset responsible party
2. Geographic location by coordinates
3. Dataset character set
4. Spatial resolution
5. Distribution format
6. Spatial representation type
7. Reference system
8. Lineage statement
9. On-line Resource
10. Metadata file identifier
11. Metadata standard name
12. Metadata standard version
13. Metadata language

Another metadata standard for geospatial data is defined by Dublin Core Metadata
Initiative (DCMI) (Dublin Core Metadata Initiative (DCMI) 1998). The metadata elements
fall into three groups which roughly indicate the class or scope of information stored in them,
which are elements related mainly to the Content of the resource, elements related mainly to the
resource when viewed as Intellectual Property, and elements related mainly to the Instantiation
of the resource. These elements are shown in table 2.

資訊管理學報　第十六卷　第四期150

Table 2: Dublin Core Metadata Elements

Content Intellectual Property Instantiation

1. Title
2. Subject
3. Description
4. Type
5. Source
6. Relation
7. Coverage

1. Creator
2. Publisher
3. Contributor
4. Rights

1. Date
2. Format
3. Identifier
4. Language

Recall that we will present a mechanism by using reversible steganographic algorithm to
embed metadata in vector maps with high capacity but low distortion for data mashup service.
In our approach, we can embed a bit in each interval constructed from the coordinates of
vertex. As a result, we can achieve the embedding capacity of 2(n-2) bits where n is the vertex
numbers of a vector map. Although. to the best of our knowledge, our capacity is much higher
than that can provide by the current state of art reversible steganography algorithms for vector
maps, such as shown in several researches (Shao et al. 2006；Voigt et al. 2004；Wang et al.
2007). The embedding capacity is limited by the vertex numbers of vector maps. For preventing
the overflow of embedding capacity, we will just employ the ISO 19115 metadata standard
in this paper. For vector maps with small amount vertex, only mandatory metadata elements
are embedded. For vector maps with sufficient amount of vertex, all metadata elements are
embedded.

The metadata definition and the space defined for the mandatory and conditional elements
are shown in table 3 and table 4.

Table 3: The definition of mandatory metadata elements used in this paper

Mandatory Elements Data Type Data Space(Byte) Definition

1. Dataset title Char 100 Define the name of the map

2. Dataset reference date Date 10 dataset create date

3. Dataset language Char 20 dataset in language

4. Dataset topic category Char 20 defined according to ISO 19115
category

5. Abstract String 250 brief description of the map

6. Metadata point of
contact Char 90 dataset contact point

7. Metadata date stamp Date 10 date that acquire the map

Total Space 500

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 151

Table 4: The definition of conditional metadata elements used in this paper

Conditional Elements Data Type Data Space(Byte) Definition

1. Dataset responsible party String 200 Define the organization that
responsible to the vector map

2. Geographic location by coordinates Number 100 Record the coordinate value the
boundary box of the vector map

3. Dataset character set Char 20 Show the character set used by
the vector map

4. Spatial resolution Char 20 Record the spatial resolution

5. Distribution format Char 30 Define the format for distribution

6. Spatial representation type Char 20 Record the Spatial representation
type of the vector map

7. Reference system Char 30 Record the reference system of
the vector map

8. Lineage statement String 200 Record the lineage of the vector
map

9. On-line Resource String 150 Record the address for online
access of the vector map

10. Metadata file identifier String 60 Show the identifier of the
metadata

11. Metadata standard name Char 30 Show the adapted metadata
standard

12. Metadata standard version Char 5 Define the metadata standard
version

13. Metadata language Char 20 Define the metadata language

Total Space 865

We can see from table 3 and table 4 that the embedding capacity should have at least 500

bytes, which is 4000 bits, in order to embed the mandatory elements in a vector map. Since the
conditional elements should not be embedded alone, the embedding capacity should have at
least 1365 bytes, which is 10920 bits, in order to embed the conditional elements in a vector
map. This will be a challenge and limitation to the method proposed in this paper.

3. METADATA EMBEDDING PROCESSES

This section presents in details our reversible steganographic algorithm for embedding
metadata in vector maps. Figure 3 shows the diagram of metadata embedding process, which
contains metadata processing phase, cover map transformation phase and metadata embedding
phase.

資訊管理學報　第十六卷　第四期152

3.1 The Metadata Processing Phase

Given a cover vector map, we calculate its amount of vertex to decide the metadata volume
to be embedded. Then we transform the proper mandatory and conditional metadata elements
to XML format. The XML file is then transfer to binary format and ready for embedding in its
associated cover map.

embedding capacity should have at least 1365 bytes, which is 10920 bits, in order to
embed the conditional elements in a vector map. This will be a challenge and
limitation to the method proposed in this paper.

3. METADATA EMBEDDING PROCESSES

This section presents in details our reversible steganographic algorithm for
embedding metadata in vector maps. Figure 3 shows the diagram of metadata
embedding process, which contains metadata processing phase, cover map
transformation phase and metadata embedding phase.

3.1 The Metadata Processing Phase

Given a cover vector map, we calculate its amount of vertex to decide the
metadata volume to be embedded. Then we transform the proper mandatory and
conditional metadata elements to XML format. The XML file is then transfer to binary
format and ready for embedding in its associated cover map.

Figure 3 Metadata embedding process diagram

3.2 The Cover Map Transformation Phase

Given a cover vector map in the World coordinates, in the transformation phase,
we transform these vertices to the PCA coordinates. We generate two lists, the odd
sorting list and the even sorting list in this process. In the data embedding phase, we
input the metadata and embed them into these two lists.

The transformation phase is the initial phase in our method. Suppose a cover
vector map contains n vertices located originally in the two-dimensional World
coordinate system, which has two orthogonal axes, X-axis and Y-axis. We denote
these n vertices as W={(a1, b1), (a2, b2), …, (an, bn)}, where the suffix “W” indicates
that these vertices are currently in the World coordinate system. We complete the
transformation phase using the following four steps of operation.

First, we compute the gravity center (G) of the cover vector map. Then, we
employ a principal component analysis (PCA) technique to produce two principal
axes for the cover map in the second step. Without loss of the generality, we refer to
two principal axes as the PCA X-axis and the PCA Y-axis, respectively. Surely, given

 10

Figure 3: Metadata embedding process diagram

3.2 The Cover Map Transformation Phase

Given a cover vector map in the World coordinates, in the transformation phase, we
transform these vertices to the PCA coordinates. We generate two lists, the odd sorting list and
the even sorting list in this process. In the data embedding phase, we input the metadata and
embed them into these two lists.

The transformation phase is the initial phase in our method. Suppose a cover vector map
contains n vertices located originally in the two-dimensional World coordinate system, which
has two orthogonal axes, X-axis and Y-axis. We denote these n vertices as W={(a1, b1), (a2, b2), ...,
(an, bn)}, where the suffix "W" indicates that these vertices are currently in the World coordinate
system. We complete the transformation phase using the following four steps of operation.

First, we compute the gravity center (G) of the cover vector map. Then, we employ a
principal component analysis (PCA) technique to produce two principal axes for the cover map
in the second step. Without loss of the generality, we refer to two principal axes as the PCA
X-axis and the PCA Y-axis, respectively. Surely, given these two axes and the gravity center G,
we can construct a unique PCA coordinate system. This allows us to transform the coordinates
of vertices in the cover vector map to the PCA coordinate system in the third step. After this
step, the original n vertices W={(a1, b1), (a2, b2), ..., (an, bn)} becomes in the PCA coordinate
system, which can be expressed as PCA ={(A1, B1), (A2, B2), ..., (An, Bn)}.

In the final step, we sort vertices with respect to the PCA X-axis coordinates in the PCA
X-axis. This produces a sorting list, LX, which contains n PCA X-axis coordinates. We referred
to each "point" in the LX as X1, X2, ..., Xn, and the sorting list as LX = { X1, X2, ..., Xn }. In
this expression, X1 represents the smallest PCA X-axis coordinates, while Xn the largest one.
Similarly, we apply the sorting operation on the vertex coordinates with respect to the PCA

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 153

Y-axis, producing a list, LY, with PCA Y-axis coordinates Y1, Y2, ..., Yn. With the extremes in
the PCA X-axis and PCA Y-axis, we can construct a bounding box (BB) encompassing the cover
vector map in the PCA coordinate system. The four boundary vertices of the bounding box in
a counterclockwise order are BV1=(X1, Y1), BV2=(Xn, Y1), BV3=(Xn, Yn), and BV4=(X1, Yn).
Given two extreme boundary vertices (X1, Y1) and (Xn, Yn), we can compute the diagonal length
of the bounding box (DLB) using the common Euclidean distance formula, where

 DLB = [(Xn－X1)2 + (Yn－Y1)2]0.5 (1)

These four boundary vertices may not be any of vertices in the cover vector map. Instead,
they represent the two extreme boundaries in the PCA X-axis and PCA Y-axis with respect to
the gravity G.

3.3 The Metadata Embedding and Reversible Mechanism

The data embedding process is used to embed metadata in vector maps. We complete this
process using the following two steps.

 In the first step, we construct two lists with respect to the PCA X-axis. Recall that we
have produced a sorting list, LX, which contains n PCA X-axis coordinates in the transformation
phase, where each "point" in the LX is referred to as X1, X2, ..., Xn, and the sorting list as LX =
{ X1, X2, ..., Xn}. Given this sorting list, we can further classify index into the odd indices or
the even indices, generating two lists, the odd sorting list and the even sorting list, respectively.
Figure 3 illustrates the generation of the odd sorting list and the even sorting list. We denote the
odd sorting list being generated as OLX and the even sorting list as ELX, respectively. Figure
4 shows the odd sorting list OLX={X1, X3, X5, ...,} and the even sorting list ELX= {X2, X4, X6,
...}. Observing the original sorting list LX = { X1, X2, ..., Xn } we can compose a number of odd
intervals which takes two "points" with odd indices as the boundaries. This interval contains
one "point" that has an even index. For example, X1 and X3 are two "points" with odd indices
and the interval contains another "point" X2 with an even index. We denote this interval as {X1-
X2-X3}. Similarly, we can build a number of even intervals composed by two "points" with even
indices and each interval contains another "point" with an odd index.

Figure 4 Constructing Odd and even list in the PCA X-axis

In the second step, we embed the metadata into the “point” X2 in the first
interval constructed from the odd sorting list OLX, which can be represented as
{X1-X2-X3} before the data embedding. The data embedding into the “point” X2 is to
shift it to an appropriate position referred to as X’2 (see the description later). Clearly,
we will generate a new interval {X1-X’2-X3} after the data embedding. Then, we
embed another bit into the “point” X3 in the first interval constructed from the even
sorting list ELX; i.e., we embed a bit into the interval {X’2-X3-X4}. Again, the
embedding will shift the “point” X3 to an approximate position X’3, resulting a new
interval {X’2-X’3-X4}, where each “point” X’2 or X’3 has embedded one bit of
metadata. Similarly, we embed the third bit into the “point” X4 of the second interval
constructed from the odd sorting list again. Followed this embedding approach, we
embed one bit of metadata in the odd sorting list first and then embed another bit in
the even sorting list. This alternation embedding approach can allow us to embed one
bit of metadata into (n-2) vertices; namely, X2, X3, …, Xn-1, keeping the first “point”
X1 and the last “point” Xn intact. Clearly, our algorithm can embed 2(n-2) bits when
taking into consideration of odd sorting lists and even sorting list with respect to both
the PCA X-axis and PCA Y-axis.

Now, we illustrate how to embed a bit, either “0” or “1”, into an interval. We
assume the interval is {Xi-Xi+1-Xi+2}, where the boundary points are “Xi” and “Xi+2”,
and the “point” that can be embed a single bit is Xi+1, as shown in Figure 5. We first
divide the interval into two equal sub-intervals. The left sub-interval is defined as with
the status value of “0” and the right sub-interval is with the status value of “1”. The
status value of the “point” Xi+1 for data embedding is decided base on the sub-interval
it is located. For example, the “point” Xi+1 shown in Figure 5 is on the status “0” since
it locates within the left sub-interval. It is on the status “1” if it locates within the right
sub-interval.

Figure 5 The sub-interval status value of “0” and “1” defined between Xi and Xi+2

Next, we embed a bit of metadata into this interval. The scenario behind the
embedding is to move Xi+1 to the appropriate sub-interval which represents the same
bit value as the metadata to be embedded. In particular, according to Figure 5, if we
intend to embed a bit of metadata “0”, we simply do nothing, since Xi+1 has located at
the status of “0”. However, if we mean to embed a metadata “1” into this interval, we
need to move Xi+1 to a point at the right sub-interval representing the status of “1”. To
ease the expression, we use the symbol X’i+1 to indicate that it has conveyed a bit of
metadata. Also, Xi+1 is referred to as the cover “point”, while X’i+1 is called the stego

 12

Figure 4: Constructing Odd and even list in the PCA X-axis

資訊管理學報　第十六卷　第四期154

In the second step, we embed the metadata into the "point" X2 in the first interval
constructed from the odd sorting list OLX, which can be represented as {X1-X2-X3} before the
data embedding. The data embedding into the "point" X2 is to shift it to an appropriate position
referred to as X'2 (see the description later). Clearly, we will generate a new interval {X1-
X'2-X3} after the data embedding. Then, we embed another bit into the "point" X3 in the first
interval constructed from the even sorting list ELX; i.e., we embed a bit into the interval {X'2-
X3-X4}. Again, the embedding will shift the "point" X3 to an approximate position X'3, resulting
a new interval {X'2-X'3-X4}, where each "point" X'2 or X'3 has embedded one bit of metadata.
Similarly, we embed the third bit into the "point" X4 of the second interval constructed from
the odd sorting list again. Followed this embedding approach, we embed one bit of metadata
in the odd sorting list first and then embed another bit in the even sorting list. This alternation
embedding approach can allow us to embed one bit of metadata into (n-2) vertices; namely, X2,
X3, ..., Xn-1, keeping the first "point" X1 and the last "point" Xn intact. Clearly, our algorithm can
embed 2(n-2) bits when taking into consideration of odd sorting lists and even sorting list with
respect to both the PCA X-axis and PCA Y-axis.

Now, we illustrate how to embed a bit, either "0" or "1", into an interval. We assume the
interval is {Xi-Xi+1-Xi+2}, where the boundary points are "Xi" and "Xi+2", and the "point"
that can be embed a single bit is Xi+1, as shown in Figure 5. We first divide the interval into
two equal sub-intervals. The left sub-interval is defined as with the status value of "0" and the
right sub-interval is with the status value of "1". The status value of the "point" Xi+1 for data
embedding is decided base on the sub-interval it is located. For example, the "point" Xi+1 shown
in Figure 5 is on the status "0" since it locates within the left sub-interval. It is on the status "1"
if it locates within the right sub-interval.

Figure 4 Constructing Odd and even list in the PCA X-axis

In the second step, we embed the metadata into the “point” X2 in the first
interval constructed from the odd sorting list OLX, which can be represented as
{X1-X2-X3} before the data embedding. The data embedding into the “point” X2 is to
shift it to an appropriate position referred to as X’2 (see the description later). Clearly,
we will generate a new interval {X1-X’2-X3} after the data embedding. Then, we
embed another bit into the “point” X3 in the first interval constructed from the even
sorting list ELX; i.e., we embed a bit into the interval {X’2-X3-X4}. Again, the
embedding will shift the “point” X3 to an approximate position X’3, resulting a new
interval {X’2-X’3-X4}, where each “point” X’2 or X’3 has embedded one bit of
metadata. Similarly, we embed the third bit into the “point” X4 of the second interval
constructed from the odd sorting list again. Followed this embedding approach, we
embed one bit of metadata in the odd sorting list first and then embed another bit in
the even sorting list. This alternation embedding approach can allow us to embed one
bit of metadata into (n-2) vertices; namely, X2, X3, …, Xn-1, keeping the first “point”
X1 and the last “point” Xn intact. Clearly, our algorithm can embed 2(n-2) bits when
taking into consideration of odd sorting lists and even sorting list with respect to both
the PCA X-axis and PCA Y-axis.

Now, we illustrate how to embed a bit, either “0” or “1”, into an interval. We
assume the interval is {Xi-Xi+1-Xi+2}, where the boundary points are “Xi” and “Xi+2”,
and the “point” that can be embed a single bit is Xi+1, as shown in Figure 5. We first
divide the interval into two equal sub-intervals. The left sub-interval is defined as with
the status value of “0” and the right sub-interval is with the status value of “1”. The
status value of the “point” Xi+1 for data embedding is decided base on the sub-interval
it is located. For example, the “point” Xi+1 shown in Figure 5 is on the status “0” since
it locates within the left sub-interval. It is on the status “1” if it locates within the right
sub-interval.

Figure 5 The sub-interval status value of “0” and “1” defined between Xi and Xi+2

Next, we embed a bit of metadata into this interval. The scenario behind the
embedding is to move Xi+1 to the appropriate sub-interval which represents the same
bit value as the metadata to be embedded. In particular, according to Figure 5, if we
intend to embed a bit of metadata “0”, we simply do nothing, since Xi+1 has located at
the status of “0”. However, if we mean to embed a metadata “1” into this interval, we
need to move Xi+1 to a point at the right sub-interval representing the status of “1”. To
ease the expression, we use the symbol X’i+1 to indicate that it has conveyed a bit of
metadata. Also, Xi+1 is referred to as the cover “point”, while X’i+1 is called the stego

 12

Figure 5: The sub-interval status value of "0" and "1" defined between Xi and Xi+2

 Next, we embed a bit of metadata into this interval. The scenario behind the embedding is
to move Xi+1 to the appropriate sub-interval which represents the same bit value as the metadata
to be embedded. In particular, according to Figure 5, if we intend to embed a bit of metadata
"0", we simply do nothing, since Xi+1 has located at the status of "0". However, if we mean to
embed a metadata "1" into this interval, we need to move Xi+1 to a point at the right sub-interval
representing the status of "1". To ease the expression, we use the symbol X'i+1 to indicate that it
has conveyed a bit of metadata. Also, Xi+1 is referred to as the cover "point", while X'i+1 is called
the stego "point." According to the design, the PCA X-coordinates of the cover vertex will be
changed after embedding the metadata.

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 155

Surely, if an algorithm does not provide the reversibility feature, moving Xi+1 to any
position on the right sub-interval will allow us to embed one bit of metadata "1". However, to
consider the reversible mechanism, we need to design the position on which the "point" Xi+1
needs to be moved to. Meanwhile, for security reason, we need to record a secret key in order to
represent the order of intervals on which we embed a bit. The process left is to where we shall
move the cover "point" Xi+1. Figures 6 and 7 illustrate all the possible position alternation of a
cover "point" Xi+1, depending on the metadata to be conveyed.

“point.” According to the design, the PCA X-coordinates of the cover vertex will be
changed after embedding the metadata.

Surely, if an algorithm does not provide the reversibility feature, moving Xi+1 to
any position on the right sub-interval will allow us to embed one bit of metadata “1”.
However, to consider the reversible mechanism, we need to design the position on
which the “point” Xi+1 needs to be moved to. Meanwhile, for security reason, we need
to record a secret key in order to represent the order of intervals on which we embed a
bit. The process left is to where we shall move the cover “point” Xi+1. Figures 6 and 7
illustrate all the possible position alternation of a cover “point” Xi+1, depending on the
metadata to be conveyed.

axisPCA X −

iX 2iX +Interval

i 1X +

'
i+1X "

i+1X

iX 2iX +Interval

i 1X +
lH rH

Figure 6 All possible position alternation of cover “point” Xi+1 where Xi+1 is

originated in the left sub-interval with the status value “0”

In Figure 6, we show the case that embeds a bit of metadata into the cover point
“Xi+1” within an interval with two boundary “points” Xi and Xi+2. In light of the
description given above, the cover “point” Xi will become the stego “point” X’i+1 after
embedding one bit of message. There are two possible cases that are needed to be
considered. We can first assume that we intend to embed a bit “0”. To convey a
metadata we need to shift Xi+1 to an “appropriate” position so that Xi+1 becomes X’i+1,
indicating that it has now conveyed a metadata of “0”. In particular, the final X’i+1 is
at a position that has a distance R0 away from Hl. Here, Hl represents the middle
position of the left sub-interval, and R0 is one fourth of the distance between Hl and
the original Xi+1. Equations (2) and (3) present mathematical expression for R0 and
X’i+1. Using this approach, we convey one secret bit of message “0” at the stego
“point” X’i+1.

 R0 = (Xi+1－Hl) /4 (2)

 X’i+1 = Hl + (Xi+1－Hl) /4 (3)

Now, we consider the case when we intend to embed one bit of metadata “1”.
Clearly, we need to move the cover “point” Xi+1 to become a stego “point” X’’i+1,
which must be located on the right half of the sub-interval with the status of “1”.
Followed the approach described above, the “appropriate” position of X’’i+1 has a
distance R1 away from Hr. shown in Equations (4). Again, Hr represents the middle
position of the right sub-interval. The new coordinate of X’’i+1 is shown in Equations
(5).

R1 = (Xi+1－Hr) /4 (4)

 13

Figure 6: All possible position alternation of cover "point" Xi+1 where Xi+1 is
originated in the left sub-interval with the status value "0"

In Figure 6, we show the case that embeds a bit of metadata into the cover point "Xi+1"
within an interval with two boundary "points" Xi and Xi+2. In light of the description given
above, the cover "point" Xi will become the stego "point" X'i+1 after embedding one bit of
message. There are two possible cases that are needed to be considered. We can first assume that
we intend to embed a bit "0". To convey a metadata we need to shift Xi+1 to an "appropriate"
position so that Xi+1 becomes X'i+1, indicating that it has now conveyed a metadata of "0". In
particular, the final X'i+1 is at a position that has a distance R0 away from Hl. Here, Hl represents
the middle position of the left sub-interval, and R0 is one fourth of the distance between Hl and
the original Xi+1. Equations (2) and (3) present mathematical expression for R0 and X'i+1. Using
this approach, we convey one secret bit of message "0" at the stego "point" X'i+1.

 R0 = (Xi+1－Hl) /4 (2)

 X'i+1 = Hl + (Xi+1－Hl) /4 (3)

Now, we consider the case when we intend to embed one bit of metadata "1". Clearly, we
need to move the cover "point" Xi+1 to become a stego "point" X''i+1, which must be located on
the right half of the sub-interval with the status of "1". Followed the approach described above,
the "appropriate" position of X''i+1 has a distance R1 away from Hr. shown in Equations (4).
Again, Hr represents the middle position of the right sub-interval. The new coordinate of X''i+1 is
shown in Equations (5).

資訊管理學報　第十六卷　第四期156

 R1 = (Xi+1－Hr) /4 (4)

 X''i+1 = Hr + (Xi+1－Hr) /4 (5)

In contrast to Figure 6, we illustrate in Figure 7 the case when the original cover "point"
Xi+1 is located on the sub-interval with the status value of "1". Similarly, if we intend to embed
a metadata of "0", we shift the cover "point" Xi+1 to X'i+1 on the left sub-interval with a distance
R0 away from the middle position of the left sub-interval. Otherwise, we embed a metadata of
"1" by moving the stego "point" Xi+1 to X''i+1 on the right sub-interval with a distance R1 away
from the middle position.

We apply the same embedding step to every interval in the odd sorting list. This means that
the "points" with the even index X2, X4, X6, ..., Xn-2 will convey one bit of metadata. With regard
to the even sorting list, similarly, we embed one bit of metadata at each "point" X3, X5, X7, ...,
Xn-1. However, we do not change the first "point" X1 and the last "point" Xn. We need these two
points fixed to ensure that the point in each interval can be reversed to its original position. As
a result, we embed a total of (n-2)/2 bits in the odd sorting list and another (n-2)/2 bits in the
even sorting list in the 2D cover vector map, where n represents numbers of vertices in the map.
Similarly, we embed n-2 bits of message in the PCA Y-axis. As a result, we can embed the total
capacity of 2(n-2) bits in a vector map, where n is the amount of vertex number of the map.

 X’’i+1 = Hr + (Xi+1－Hr) /4 (5)

In contrast to Figure 6, we illustrate in Figure 7 the case when the original cover
“point” Xi+1 is located on the sub-interval with the status value of “1”. Similarly, if we
intend to embed a metadata of “0”, we shift the cover “point” Xi+1 to X’i+1 on the left
sub-interval with a distance R0 away from the middle position of the left sub-interval.
Otherwise, we embed a metadata of “1” by moving the stego “point” Xi+1 to X’’i+1 on
the right sub-interval with a distance R1 away from the middle position.

We apply the same embedding step to every interval in the odd sorting list. This
means that the “points” with the even index X2, X4, X6, …, Xn-2 will convey one bit of
metadata. With regard to the even sorting list, similarly, we embed one bit of metadata
at each “point” X3, X5, X7, …, Xn-1. However, we do not change the first “point” X1
and the last “point” Xn. We need these two points fixed to ensure that the point in each
interval can be reversed to its original position. As a result, we embed a total of
(n-2)/2 bits in the odd sorting list and another (n-2)/2 bits in the even sorting list in the
2D cover vector map, where n represents numbers of vertices in the map. Similarly,
we embed n-2 bits of message in the PCA Y-axis. As a result, we can embed the total
capacity of 2(n-2) bits in a vector map, where n is the amount of vertex number of the
map.

Status
axisPCA X −

iX 2iX +Interval

i 1X +
'

1iX +
"

1iX +

iX 2iX +Interval

i 1X +
lH rH

Figure 7 All possible position alternation of cover “point” Xi+1 where Xi+1 is
originated in the right sub-interval with the status value “1”

 Our approach need to hold some side information during the embedding
processes. The information required to be held includes two principal axes plus the
gravity center of both the cover model and stego model, the length of the bounding
volume, and a secret key. The first two are used to against translation, rotating,
uniform scaling for the stego map. The last one is to enhance the security of the data
hidden in stego map. It is also used for extracting the hidden data from stego map.

4. METADATA EXTRACTION AND RESTORING
PROCESSES

There are three phases in the metadata extraction and restoring processes. They
are stego map rectifying phase, metadata extraction phase and metadata restoring
phase. Figure shows the diagram of these processes. The details of these phases are
discussed in this section.

 14

Figure 7: All possible position alternation of cover "point" Xi+1 where Xi+1 is
originated in the right sub-interval with the status value "1"

Our approach need to hold some side information during the embedding processes. The
information required to be held includes two principal axes plus the gravity center of both the
cover model and stego model, the length of the bounding volume, and a secret key. The first
two are used to against translation, rotating, uniform scaling for the stego map. The last one is
to enhance the security of the data hidden in stego map. It is also used for extracting the hidden
data from stego map.

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 157

4. METADATA EXTRACTION AND
RESTORING PROCESSES

There are three phases in the metadata extraction and restoring processes. They are stego
map rectifying phase, metadata extraction phase and metadata restoring phase. Figure shows the
diagram of these processes. The details of these phases are discussed in this section.

Figure 8 Metadata extracting and restoring processes diagram

4.1 Stego Map Rectifying Phase

Before data extraction, the stego map is needed to be rectified by using two side
information derived during metadata embedding process. The side information used
for the rectification includes two PCA axes and the gravity center value of both the
cover map and stego map. The stego map rectifying phase is used to prevent the errors
from displacement and transformation attacks to the stego map.

4.2 Metadata Extraction Phase

Once the stego maps have been rectified, we still need to implement the
preprocessing phase which is exactly the same as used in metadata embedding
processes. After processing on the stego map, the metadata extraction must begin
from the even sorting list first, since we need to ensure that the interval in the even
sorting list is reversed to its original form. Once metadata extraction in even sorting
list is done, we can then extract the metadata from the odd sorting list.

We use the processing on the PCA X-axis to illustrate the data extraction process.
We then take the next three steps for each PCA axis to extract the secret message and
produce the recovered cover “point”.

Step-1: Find an interval {X’i-X’i+1-X’i+2}, which has been embedded with the
metadata according to the secret key K.

Step-2: Extract a data bit from the position of X’i+1 in the interval
{X’i-X’i+1-X’i+2}. In particular, the data bit is set to 0 if X’i+1 is located
on the left of the sub-interval and 1 otherwise.

Step-3: Restore the recovered cover “point” 1iX + by Equation (6), where Hl is the
middle position of the left sub-interval. The derivation of Equation (6) is
using a simple mathematical transposition from the original embedding
expression for the stego “point” '

1iX + where .
Clearly, we can derive a similar recovered

'
1 1()i l i lX H X H+ += + − / 4

1iX + using the middle position
of the right sub-interval Hr.

 l
'

1 14 3i iX X H+ +× − × , (6) =

 15

Figure 8: Metadata extracting and restoring processes diagram

4.1 Stego Map Rectifying Phase

Before data extraction, the stego map is needed to be rectified by using two side
information derived during metadata embedding process. The side information used for the
rectification includes two PCA axes and the gravity center value of both the cover map and
stego map. The stego map rectifying phase is used to prevent the errors from displacement and
transformation attacks to the stego map.

4.2 Metadata Extraction Phase

Once the stego maps have been rectified, we still need to implement the preprocessing
phase which is exactly the same as used in metadata embedding processes. After processing on
the stego map, the metadata extraction must begin from the even sorting list first, since we need
to ensure that the interval in the even sorting list is reversed to its original form. Once metadata
extraction in even sorting list is done, we can then extract the metadata from the odd sorting list.

We use the processing on the PCA X-axis to illustrate the data extraction process. We
then take the next three steps for each PCA axis to extract the secret message and produce the
recovered cover "point".

Step-1: Find an interval {X'i-X'i+1-X'i+2}, which has been embedded with the metadata
according to the secret key K.

Step-2: Extract a data bit from the position of X'i+1 in the interval {X'i-X'i+1-X'i+2}. In
particular, the data bit is set to 0 if X'i+1 is located on the left of the sub-interval and
1 otherwise.

資訊管理學報　第十六卷　第四期158

Step-3: Restore the recovered cover "point" Xi+1 by Equation (6), where Hl is the middle
position of the left sub-interval. The derivation of Equation (6) is using a simple
mathematical transposition from the original embedding expression for the
stego "point" X'i+1 where X'i+1 = Hl+(Xi+1-Hl) /4. Clearly, we can derive a similar
recovered Xi+1 using the middle position of the right sub-interval Hr.

 Xi+1 = 4×X'i+1 -3Hi (6)

Step-4: Repeat Step-1 and 3 above for all the intervals on a given stego model until
the embedded data have been extracted from each stego "point" and the cover
"point" is recovered. We apply the same processes to the PCA Y-axis to extract the
embedded data and recover the cover "point".

Finally, we apply PCA inverse transformation to the coordinate value of each vertex. This
transforms the vertices in the PCA coordinate system back to the World coordinate system,
generating the recovered map.

4.3 Metadata Restoring Phase

During the metadata extraction process, a binary file is extracted from the stego map. The
binary file contains the metadata that had been embedded in cover map. We then transform the
binary file to XML file metadata elements. Finally the XML file is restored to metadata table.

5. EXPERIMENTAL RESULTS

We now present our experimental results. The software architecture for implementing the
experiments, the factors that are commonly used in GISs to evaluate accuracy of vector maps,
the features of the vector maps for our experiments and evaluation of the experimental results
are described in this section.

5.1 Software Architecture

We use Java programming language to implement the main program for experiments.
Results were collected on a personal computer with a 3.4GHz processor and 2 GB memory.
We also use the concept of "mashup" to include some open source programs and application
programming interface (API) to develop the system for metadata embedding. The software
architecture is shown in Figure 9.

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 159

Step-4: Repeat Step-1 and 3 above for all the intervals on a given stego model
until the embedded data have been extracted from each stego “point” and
the cover “point” is recovered. We apply the same processes to the PCA
Y-axis to extract the embedded data and recover the cover “point”.

Finally, we apply PCA inverse transformation to the coordinate value of each
vertex. This transforms the vertices in the PCA coordinate system back to the World
coordinate system, generating the recovered map.

4.3 Metadata Restoring Phase

During the metadata extraction process, a binary file is extracted from the stego
map. The binary file contains the metadata that had been embedded in cover map. We
then transform the binary file to XML file metadata elements. Finally the XML file is
restored to metadata table.

5. EXPERIMENTAL RESULTS

We now present our experimental results. The software architecture for
implementing the experiments, the factors that are commonly used in GISs to evaluate
accuracy of vector maps, the features of the vector maps for our experiments and
evaluation of the experimental results are described in this section.

5.1 Software Architecture

We use Java programming language to implement the main program for
experiments. Results were collected on a personal computer with a 3.4GHz processor
and 2 GB memory. We also use the concept of “mashup” to include some open source
programs and application programming interface (API) to develop the system for
metadata embedding. The software architecture is shown in Figure 9.

Figure 9 The software architecture of metadata embedding system

 16

 Figure 9: The software architecture of metadata embedding system

The details of each component in the software architecture are described as follows:
● Steganography application with Java: The benefits to use Java language to develop

application are such as encapsulation, abstraction, inheritance and polymorphism.
Rely on above characters, it is flexible and can reuse the object to reduce develop
cost.

● Eclipse Java IDE: It is free, open-source integrated development environment (IDE).
And there are many Java-related plug-in for Eclipse.

● JavaDBF: This is a plug-in package for the application. Because metadata can be
accessed by DBF file (*.dbf), this package can access format of DBF file.

● JMathTools: This package collection of independent packages designed to fit common
engineering or scientific computing needs. To plug-in this package the main function
is deal with original coordinate transform to PCA coordinate.

● Jigloo GUI Builder: This is a plug-in for the Eclipse Java IDE which to build and
manage both Swing and SWT GUI classes. It implements a set of components
for building graphical user interfaces and adding rich graphics functionality and
interactivity to Java applications.

● I/O: Provides for system input and output through data streams, serialization and the
file system. In the system, the main function is input, read, write cover map, stego
map, recover map, and DBF file.

● Lang and util Packages: Provides classes that are fundamental to the design of the
Java programming language such as String, Math.

● JVM and Platforms: Programmer wrote a source code must compile to machine
code for execute in general program language. But the different situation in Java,
the source code compiles result is byte code that machine and operation system

資訊管理學報　第十六卷　第四期160

is unknown. Therefore, JVM main decode byte code to machine code for execute
program. Besides that, JVM also need to deal with across platform problem for
achieving write one run any where.

5.2 Accuracy Evaluation Factors

We performed experiments to evaluate the capacity, imperceptibility, reversibility of the
algorithm. We describe more about several important factors for vector maps in the following
before we present our experimental results.

Recall that vector maps are one of fundamental data representations for geographic
information system (GIS), which depends upon the abstraction and classification of real-world
phenomena. Five factors are commonly used in GIS to evaluate the accuracy of 2D vector maps,
which include maps scale, map accuracy standard (), root mean square error (RMSE), average
displacement (), and the diagonal length of bounding box (DLB). We describe each factor in
more detail.

1. Map scale: The ability to show how detail in a map is determined by the scale. A map
with a scale of 1:1000 can illustrate much finer points of data than a smaller scale map of
1:250000. The mathematical expression for the map scale is the ratio of the map distance
in a map over and the ground distance on the surface, shown in Equation (7).

 Map scale = map distance/ground distance (7)

2. Map accuracy standard (): The map accuracy standard is a function of the scale at
which a map was created. The Specification and Committee of the American Society
for Photogrammetry and Remote Sensing (ASPRS) have developed the Planimetric
Coordinate Accuracy Requirement of the term "well-defined point" which pertains to
features that can be sharply identified as discrete points (Chao et al. 2009). Points which
are not well-defined (that is poorly-defined) are excluded from the map accuracy test.
ASPRS defines the limiting root mean square error (RMS error) is 0.025% of a typical
ground distance in map scale. As an example, for a typical map scale of 1:20000, the
ground distance is 20000 meters, thus the limiting RMS error is 5 meters. Equation (8) is
a mathematical expression of the map accuracy standard in meter.

 Map accuracy standard () = ground distance in map scale x 0.025% (8)

3. Root mean square error (RMS error): The RMS error is defined to be the square root of
the average of the squared discrepancies. Since the connectivity of the cover and stego
maps as well as cover and recovery maps are identical, the RMS error of each 2D vector

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 161

map is calculated to measure the distortion. We use RMSEE to indicate the embedding
distortion, which represents the average distortion per vertex between cover and stego
vector maps. Similarly, we denote RMSER to indicate the recovering distortion, which
represents the average distortion per vertex between the recovered map and the original
map when applying our reversible algorithm.

4. Average displacement (σ): The average displacement represents the displacement occurs
in real world. This is used as a quantitative measure for representing the average error in
real world caused by the distortion after embedding secret message to the vector maps.
We denote E as the average displacement per vertex between cover and stego vector
maps caused by data embedding. Similarly, R represents the average displacement per
vertex between the recovered map and the original map used in our reversible algorithm.
The equation of this factor is calculated by Equation (9).

 Average displacement (σ) = RMS error x map scale (9)

5. The Diagonal Length of the Bounding Box (DLB). The DLB represents the diagonal
length of the bounding box defined in the transformation phase. The bounding box was
constructed with the extremes in the X-axis and Y-axis. The DLB shows the magnitude
of vector maps with respect to the center of gravity (G).

5.3 Evaluation of Experimental Results

We now present our experimental results. In our experimental test, we employ three vector
maps and employ the above factors to validate the feasibility of proposed methods for metadata
embedding in vector maps. Table 5 lists characteristics of three vector maps together with
important features. Observing Table 1 indicates that three vector maps have different amounts
of vertices, ranging from 2,685 to 9,199 vertices. The Taitung map has the largest Map Scale,
which also has the largest Map Accuracy Standard (125 meters) and nearly 155 km of DLB. The
Taitung Village map, however, has the smallest Map Scale, containing smallest Map Accuracy
Standard (25 meters) and approximately 155 km of DLB. Finally, Pmax represents numbers of
digitals that are allowed in the mantissa of the decimal value.

Table 5: Features of three vector maps employed for experiments

Name of Vector Maps Vertex Amounts Map Scale (m) DLB (m) Pmax

Taitung Village 9,199 1:100000 25 155,127 6

Taitung County 4,905 1:250000 62.5 155,127 6

Taitung 2,685 1:500000 125 155,127 6

資訊管理學報　第十六卷　第四期162

Figure 10 shows three vector maps with a proportional scale, measured in meters, which is
displayed at the bottom of the image. We present the ground distance for each map in kilometers,
which is derived from the first short black line of the proportional scale displayed at the bottom
left. As an example, the first short black line in Taitung Village represents approximately 37.5
kilometers of the ground distance.

The Taitung map has the largest Map Scale, which also has the largest Map Accuracy
Standard (125 meters) and nearly 155 km of DLB. The Taitung Village map, however,
has the smallest Map Scale, containing smallest Map Accuracy Standard (25 meters)
and approximately 155 km of DLB. Finally, Pmax represents numbers of digitals that
are allowed in the mantissa of the decimal value.

Table 5 Features of three vector maps employed for experiments

Name of Vector Maps Vertex
Amounts Map Scale τ (m) DLB (m) Pmax

Taitung Village 9,199 1:100000 25 155,127 6
Taitung County 4,905 1:250000 62.5 155,127 6

Taitung 2,685 1:500000 125 155,127 6

Figure 10 shows three vector maps with a proportional scale, measured in
meters, which is displayed at the bottom of the image. We present the ground distance
for each map in kilometers, which is derived from the first short black line of the
proportional scale displayed at the bottom left. As an example, the first short black
line in Taitung Village represents approximately 37.5 kilometers of the ground
distance.

Taitung Village (37.5 km)

Map Scale : 1 :100000

Vertex Amounts : 9,199

τ (m): 25 m

Taitung County (37.5 km)

Map Scale : 1 :250000

Vertex Amounts : 4,905

τ (m): 62.5 m

 19

Taitung (37.5 km)

Map Scale : 1 :500000

Vertex Amounts : 2,685

τ (m): 125 m

Figure 10 Features of three vector maps employed for experimental test

We present our experimental results by performing the maximum embedding
capacity of metadata. There are 2(n-2) bits to be embedded in each vector maps where
n is the amount of vertex number of vector maps. The results are evaluated based on
the capacity, reversibility and imperceptibility as follows.

1. Capacity Results

Table 6 presents the embedding capacity of our algorithm. Recall that our
methods can embed (n-2) bits of metadata in the odd-list and another (n-2) bits in the
even-list of a cover vector map, where n represents the amount of vertices in the
vector map. This leads to the theoretical data capacity of our algorithm is 2(n-2) bits.
The data capacity shown in Table 6 comply the theoretical data capacity. The
embedding capacity of our algorithm is nearly 2 bits per vertex (bpv). According to
the embedding capacity shown in byte, only Taitung village is capable to embed both
mandatory and conditional metadata elements. Taitung county map and Taitung map
can only be embedded mandatory metadata elements.

The results show in Table 6 proves that our method has small embedding
distortion. The RMSEE is in the range of 0.000057 and 0.000087. The small range of
the RMSEE implies that while embedding a large amount of metadata, our algorithm
produces insignificant distortion in the stego vector map. Also shown in Table 6 are
values of the average displacement of the embedding (Eσ) in the stego maps. All Eσ
values are smaller than the map accuracy standardτ . These values show a significant
benefit of our methods, which is the positional error caused from the distortion in the
stego map is still within the map accuracy standard and the stego map can still be
employed in the GIS applications. Finally, observing Eσ and τ allows us to increase
the capacity to a vector map which has larger difference between Eσ and τ ,
because it can still tolerate more distortion due to the embedded metadata.

Table 6 Experimental results for metadata embedding and recovery of vector maps

Embedding Recovery Name of
the Map

Vertex

Amounts

Capacity

(bits)

Capacity

(bytes)
τ (m)

RMSEE Eσ (m) RMSER Rσ (m)

Taitung
Village 9,199 18,394 2299 25.0 0.000087 8.68 3.41E-11 3.41E-06

 20

Figure 10: Features of three vector maps employed for experimental test

We present our experimental results by performing the maximum embedding capacity of
metadata. There are 2(n-2) bits to be embedded in each vector maps where n is the amount of
vertex number of vector maps. The results are evaluated based on the capacity, reversibility and
imperceptibility as follows.

1. Capacity Results

Table 6 presents the embedding capacity of our algorithm. Recall that our methods can
embed (n-2) bits of metadata in the odd-list and another (n-2) bits in the even-list of a cover
vector map, where n represents the amount of vertices in the vector map. This leads to the
theoretical data capacity of our algorithm is 2(n-2) bits. The data capacity shown in Table 6

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 163

comply the theoretical data capacity. The embedding capacity of our algorithm is nearly 2 bits
per vertex (bpv). According to the embedding capacity shown in byte, only Taitung village is
capable to embed both mandatory and conditional metadata elements. Taitung county map and
Taitung map can only be embedded mandatory metadata elements.

The results show in Table 6 proves that our method has small embedding distortion. The
RMSEE is in the range of 0.000057 and 0.000087. The small range of the RMSEE implies that
while embedding a large amount of metadata, our algorithm produces insignificant distortion
in the stego vector map. Also shown in Table 6 are values of the average displacement of the
embedding (E) in the stego maps. All E values are smaller than the map accuracy standard.
These values show a significant benefit of our methods, which is the positional error caused
from the distortion in the stego map is still within the map accuracy standard and the stego map
can still be employed in the GIS applications. Finally, observing E and allows us to increase
the capacity to a vector map which has larger difference between E and , because it can still
tolerate more distortion due to the embedded metadata.

Table 6: Experimental results for metadata embedding and recovery of vector maps

Name of the Map Vertex
Amounts

Capacity
(bits)

Capacity
(bytes)

 (m)
Embedding Recovery

RMSEE E (m) RMSER R (m)

Taitung Village 9,199 18,394 2299 25.0 0.000087 8.68 3.41E-11 3.41E-06

Taitung County 4,905 9,806 1225 62.5 0.000064 15.97 1.38E-11 3.45E-06

Taitung 2,685 5,366 670 125.0 0.000057 28.38 7.04E-12 3.52E-06

2. Reversibility Results

Our algorithm has the reversibility manner, which means we can produce a recovered
vector map once the metadata is extracted. We compare the recovered vector map and the
original cover map to check the success of the reversibility that our methods can provided. The
final column in Table 6 shows the comparison in terms of the root mean square error for the
recovery process (RMSER) and the corresponding average displacement of the recovery (). All
values of RMSER are small, being less than 3.41E-11, and values of are smaller than 3.52E-
06 meter. These statistics demonstrate that the success of our reversible mechanism. While the
recovered vector maps have small root mean square error values, the positional errors occurred
in all recovery maps are insignificant and within the map accuracy standard. Surely, the
accuracy of recovery maps satisfies the requirements of GIS applications development.

3. Imperceptibility Analysis

Figure 11 illustrates a visualization of the cover vector maps (left) and the stego vector
maps (right) for the most complex test vector map-Taitung Village. Within the vector maps, it

資訊管理學報　第十六卷　第四期164

has very small embedding distortion (small RMSEE and values). Clearly, observing the images
it is hard to identify any difference between cover map and stego map. As a result, our method
can be used to embed a large amount of metadata, yet produces insignificant distortion that
imperceptible to human visual system.

Taitung
County 4,905 9,806 1225 62.5 0.000064 15.97 1.38E-11 3.45E-06

Taitung 2,685 5,366 670 125.0 0.000057 28.38 7.04E-12 3.52E-06

2. Reversibility Results

Our algorithm has the reversibility manner, which means we can produce a
recovered vector map once the metadata is extracted. We compare the recovered
vector map and the original cover map to check the success of the reversibility that
our methods can provided. The final column in Table 6 shows the comparison in
terms of the root mean square error for the recovery process (RMSER) and the
corresponding average displacement of the recovery (Rσ). All values of RMSER are
small, being less than 3.41E-11, and values of Rσ are smaller than 3.52E-06 meter.
These statistics demonstrate that the success of our reversible mechanism. While the
recovered vector maps have small root mean square error values, the positional errors
occurred in all recovery maps are insignificant and within the map accuracy standard.
Surely, the accuracy of recovery maps satisfies the requirements of GIS applications
development.

3. Imperceptibility Analysis

Figure 11 illustrates a visualization of the cover vector maps (left) and the stego
vector maps (right) for the most complex test vector map - Taitung Village. Within the
vector maps, it has very small embedding distortion (small RMSEE and Eσ values).
Clearly, observing the images it is hard to identify any difference between cover map
and stego map. As a result, our method can be used to embed a large amount of
metadata, yet produces insignificant distortion that imperceptible to human visual
system.

Figure 11 A visualization of the cover vector map (left) and the stego vector maps (right).

 21

Figure 11: A visualization of the cover vector map (left) and
the stego vector maps (right).

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a metadata internal storage method by using reversible
steganographic algorithm to embed metadata in vector maps. Experimental results shows
that the maximum metadata embedding capacity of our method is 2(n-2) bits, where n is the
amount of vertices in a cover vector map. To the best of our knowledge, this is the highest
capaicty achieved in the literature of reversible steganograhy method for vector maps. The
results aslo show that our method produces a stego vector map with negligible distortion,
being only 0.000057 of the root mean square error. In addition, our method has the capability
of reversibility. This means that once the metadata is extracted, we can produce a recovery
map with high accuracy that can be used in GIS applications.We only need three secet keys for
data extracton, including the gravity of the cover map, the major and minor axes generated by
applying the principal component analysis on the cover vector map. Experimental results also
show that there is an insignificantly difference between the original and the recovered map,
which is less than 3.41E-11 of the root mean square error and is imperceptible to the human
visual system. Meanwhile, our method is robust against the affine transformation including
translation, rotation uniform scaling, and their combinations. Our method is also secure because
embedded metadata can not be extracted correctly without the legal secret keys provided.

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 165

In considering to the capacity required by embedding the mandatory and conditional
metadata elements of ISO 19115 metadata standard that we have adapted in this paper, a vector
map should has at least 5458 vertices so that all mandatory and conditional metadata elements
can be embedded in the vector map. Since the conditional elements should not be embedded
alone, a vector map should has at least 1998 vertices so that the mandatory metadata elements
can be embedded and integrated with the vector map. Any vector map with vertex points less
than 1998 is suggested to embed some metadata elements only, such as dataset title, metadata
point of contact and the information link of metadata. Furthermore, our method can aslo be used
to embed data with less capacity, such as copyright declaration, watermarking information, and
user authentication information.

There are some possible future works deserved to be investigated. The first is to extend
the method proposed in this paper to increase the embedding capacity. So that the limitation
caused by the amount of vertex of vector maps can be improved. The second is to investigate
the effects of vector maps' features to our method, such as the complexity of cover vector maps,
the smoothness of boundary, and the included angle between vertices. So that better results in
embedding capacity and recovery accuracy can be achieved. Finally, a distortion free method
for internal metatdata storage mechanism should be considered as the utimate goal of all future
works.

Reference

1. Bogomjakov, A., Gotsman, C. and Isenburg, M.“Distortion-Free Steganography for
Polygonal Meshes,＂Computer Graphics Forum (27:2), April, 2008, pp. 637-642.

2. Boll, S., Klas, W. and Sheth, A.P.“Overview on Using Metadata to manage Multimedia
Data,＂Multimedia Data Management, McGraw-Hill, New York, 1998, pp. 1-17.

3. Butler, D.“Mashups mix data into global service,＂Nature (439:7072), 2006, pp. 6-7.
4. Chao, M. W., Lin, C. H., Yu, C. W. and Lee, T. Y.“A High Capacity 3D Steganography

Algorithm,＂IEEE Transaction on Visualization and Computer Graphics (20:3), May/June
2009, pp. 1-11.

5. Chen, K. W., Wang, S. M. and Wang, C. M.“A Reversible Data Hiding Algorithm for 2D
Vector Map,＂Communications of the CCISA, 2007,

6. Chen, K. W., Wang, S. M. and Wang, C. M.“A Reversible Data Hiding Algorithm for
Vector Maps,＂Information Security Conference 2007, Chiayi, Taiwan, 2007.

7. Cummins, J., Diskin, P., Lau, S. and Parlett, R. Steganography And Digital Watermark,
2004. (http://www.cs.bham.ac.uk/~mdr/teaching/modules03/security/students/SS5/
Steganography.pdf)

8. Dublin Core Metadata Initiative (DCMI). Dublin Core Metadata Element Set, Version 1.0:
Reference Description, 1998. (http://dublincore.org/documents/1998/09/dces/#)

資訊管理學報　第十六卷　第四期166

9. Federal Geographic Data Committee (FGDC). Geospatial Metadata. (2006). (http://www.
fgdc.gov/metadata)

10. Fisher, M.“Hotmap: Looking at Geographic Attention,＂IEEE transactions on
Visualization and Computer Graphics (13:6), November/December, 2007, pp.1184-1191.

11. Goodchild, M. F., Egenhofer, M. J., Fegeas, R. and Kottman, C. A.“Interoperating
Geographic Information Systems,＂International Conference and Workshop on
Interoperating Geographic Information Systems, Santa Barbara, California, USA, 1997.

12. Goodman, E. and Moed, A.“Community in Mashups: The Case of Personal Geodata,＂
Web Mash-ups and CSCW: Opportunities and Issues, The 20th ACM Conference on
Computer Supported Cooperative Work, Banff, Alberta, Canada, 2006.

13. Gunther, O. and Voisard, A.“Metadata in Geographic and Environmental Data
Management,＂Managing Multimedia Data: Using Metadata to Integrate and Apply
Digital Data, Mc-Graw Hill, 1998, pp. 57-87.

14. International Organization for Standardization (ISO). ISO 19115:2003 (2003). (http://www.
iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26020)

16. Kaasinen, E.“User needs for location-aware mobile services,＂Personal Ubiquitous
Computing (7:1), 2003, pp. 70-79.

17. Kahn, D.“The history of steganography,＂Lecture Notes In Computer Science:
Proceedings of the First International Workshop on Information Hiding (1174), 1996,
Springer Berlin / Heidelberg, pp. 1-5.

18. Kashyap, V. and Sheth, A.“Semantic Heterogeneity in Global Information Systems: The
Role of Metadata, Context and Ontology,＂Cooperative Information Systems: Current
Trends and Directions, 1996, Academic Press, pp. 139-178.

19. Kim, H.J., Sachnev, V., Shi, Y. Q., Nam, J. and Choo, H. G.“A Novel Difference
Expansion Transform for Reversible Data Embedding,＂IEEE Transactions on Information
Forensics and Security (3:3), 2008, pp. 456-465.

20. Mnzis, A. H.“The Road to Ubiquitous Geographic Information Systems Roam Anywhere
-Remain Connected,＂SIRC 2000-The 12th Annual Colloquium of the Spatial Information
Research Centre, University of Otago, Dunedin, New Zealand, 2000.

21. Petitcolas, F.A.P., Anderson, R.J. and Kuhn, M. G.“Information Hiding-A Survey,＂
Proceedings of the IEEE, special issue on protection of multimedia content (87:7), 1999,
pp. 1062-1078.

22. Pfitzmann, B.“Information Hiding Terminology - Results of an Informal Plenary Meeting
and Additional Proposals,＂Lecture Notes In Computer Science (1174), Springer-Verlag,
London, 1996.

23. Popa, R.“An Analysis of Steganographic Techniques,＂1998. (http://ad.informatik.uni-
freiburg.de/mitarbeiter/will/dlib_bookmarks/digital-watermarking/popa/popa.pdf)

24. Schulz, G. and Voigt, M.“A high capacity watermarking system for digital maps,＂ACM

Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 167

International. Workshop on Multimedia and Security, Magdeburg, Germany, 2004, pp.
180-186.

25. Shao, C. Y., Wang, H. L., Niu, X. M. and Wang, X. T.“A Shape-Preserving Method for
Watermarking 2D Vector Maps Based on Statistic Detection,＂IEICE-Transactions on
Information and Systems, 2006, pp. 1290-1293

26. Tan, X., Zhou, M., Zuo, X. and Cui, Y.“Integration WebGIS with AJAX and XML
Based on Google Maps,＂The First International Conference on Intelligent Networks and
Intelligent Systems, 2008, pp. 376-379.

27. Tian, J.“Reversible data embedding using difference expansion,＂IEEE Transactions on
Circuits Systems and Video Technology (13:8), 2003, pp. 890-896.

28. Turner, J. M.“Data about metadata: beating the MetaMap into shape,＂American Society
for Information Science & Technology, Special Interest Group on Classification Research
(SIG/CR) Workshop, 2004.

29. Voigt, M., Yang, B. and Busch, C.“Reversible watermarking of 2d-vector data,＂ACM
Int. Workshop on Multimedia and Security, Magdeburg, Germany, 2004, pp. 160-165.

30. Wang, C. M. and Wang, P. C.“Steganography on Point-Sampled Geometry,＂Computers
& Graphics (30:2), 2006, pp. 244-254.

31. Wang, S. M. and Chen, F. M.“The Development of a Ubiquitous Geographic Information
Service by Using Service-Oriented Architecture,＂IEEE Asia-Pacific Services Computing
Conference, Yilan, Taiwan, 2008, pp. 453-457.

32. Wang, X. T., Shao, C. Y., Xu, X. G. and Niu, X. M.“Reversible Data-Hiding Scheme for
2-D Vector Maps Based on Difference Expansion,＂IEEE Transactions on information
forensics and security (2:3), 2007, pp. 311-320.

33. Yu, J., Benatallah, B., Casati, F. and Daniel, F.“Understanding Mashup Development,＂
IEEE Internet Computing (12:5), 2008, pp. 44-52.

34. Zhang, D., Qian, D., Wu, W., Liu, A., Yang, X. and Han, P.“Spatial Map Data Share
and Parallel Dissemination System Based on Distributed Network Services and Digital
Watermark,＂Network and Parallel Computing (4672/2008), Berlin / Heidelberg, Springer,
2008.

