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Abstract
Vector maps are the fuel of many Geographic Information System (GIS) applications. 

Metadata, which is the data about vector maps, are introduced to provide the details of the vector 

maps. The usage of metadata is still facing some problems. Especially the storage of metadata is 

a problem that needs to be resolved. This paper presents an internal metadata storage mechanism 

for solving metadata storage problem by using a reversible steganographic algorithm to embed 

metadata in vector maps. Experimental results show that this method provides a solution for 

metadata embedding with high capacity but low distortion. The capacity of metadata embedding 

is 2(n-2) bits, where n is the amount of vertices of vector maps. To the best of our knowledge, 

our method provides the highest capaicty achieved in the literature of steganograhy for vector 

maps. In considering to the capacity required by the metadata elements of ISO 19115 metadata 

standard that we have adapted in this paper, a vector map should has at least 5458 vertices so 

that all mandatory and conditional metadata elements can be embedded in the vector map. Since 

the conditional elements should not be embedded alone, a vector map should has at least 1998 

vertices so that the mandatory metadata elements can be embedded and integrated with the 

vector map. Experimental results also show that there is an insignificantly difference between 

the original and the recovery map, which is less than 3.41E-11 of the root mean square error 

(RMSE) and is imperceptible to the human visual system. Surely, the accuracy of recovery 

maps satisfies the requirements of all GIS applications development. Meanwhile, our method is 
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robust against the affine transformation including translation, rotation, uniform scaling, and their 

combinations. 

Key words :  metadata, steganographic algorithms, vector maps, embedding capacity, 

reversible.
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摘要

向量地圖（Vector Maps）是很多地理資訊系統（GIS）發展與應用的基礎。向量地
圖的後設資料（Metadata）除提供該地圖相關的詳細資料外，也是GIS發展中非常重要
的參考資料。雖然後設資料的應用已有既定的基礎，但卻仍存在一些問題，尤其是其資

料儲存的問題。本研究提出一個應用可逆式資料隱藏演算法，可將後設資料嵌入向量地

圖。研究結果顯示，本研究可於向量地圖中嵌入2（n-2）位元的資料量，其中n代表此
向量地圖的頂點數。與其它已知的研究成果相比，我們所提的方法具有最高的資料嵌入

量。而本研究實驗結果顯示，一個向量地圖最少要有5458個頂點數，才能將完整的嵌入
本研究所採用的ISO 19115後設資料標準中的所有項目。而最少要有1998頂點數，才能嵌
入該標準所訂定的主要後設資料項目。實驗結果也顯示，本研究將後設資料擷取出來後

的復原圖與原始圖間僅有肉眼所無法分辨出來的3.41E-11的RMSE誤差量。此結果可滿足
任何GIS應用與發展上的精度需求。另我們的方法也具其強韌度，可抗拒外在平移、旋
轉、等量縮放，以及其組合性的攻擊。

關鍵字：��後設資料、資料隱藏演算法、向量地圖、訊息容量、可逆式
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1. INTRODUCTION

Ggeographical information data and services are becoming accessible in various new 
forms and through a wide range of applications as well as new classes of devices (Wang & Chen 
2008). As the technology develops we need to discuss the potentials, problems and technical 
issues of emerging development trends of geographic information data and services (Goodchild 
et al. 1997；Mnzis 2000). Recently, online interactive mapping systems are growing in 
popularity (Fisher 2007；Kaasinen 2003；Tan et al. 2008；Zhang et al. 2008). The evolutions 
of mashup of different Web Service and data resources have flourished the applications of 
geographic information systems (GISs). A mashup is a kind of mechanism that combines two or 
more separate data streams to create application content (Yu et al. 2008). Already, hundreds of 
mashups overlay maps with everything from such practical information as gas station locations, 
rice fields, hurricane movements, hot springs sites and crime statistics (Butler 2006). Nowadays, 
online mapping mashup is evolving into a nexus of technologies and communities that is 
changing the fundamental use of the Internet, as well as redefining the concept of vector maps 
used in various applications (Goodman & Moed 2006).

Vector maps, which emphasize spatial variation of one or a small number of geographic 
distributions, are used to display spatial pattern of a theme or series of attributes. These 
patterns may be physical phenomena such as administration boundary and climate or human 
characteristics such as population density and village place. Vector maps are the most important 
component in an online mapping mashup service system, because they are the fuel of the other 
layers. Hence, it is important to know the details, such as copyright, scale, quality, accuracy, 
specifications, date, and usage limitation of these vector maps.

Metadata, which is the data about vector maps, are introduced to provide the details of 
vector maps. For example, users need metadata to locate appropriate data sets. Meanwhile, 
metadata provides information about the data available within an organization or from catalog 
services, clearinghouses, or other external sources. In the data quality issue, metadata not 
only helps find data, but once data has been found, it also tells how to interpret and use data. 
Furthermore, publishing metadata will facilitate data sharing. The data sharing mechanism is the 
core of online mapping mashup service system (Gunther & Voisard 1998).

The Importance of metadata for GIS application development has been emphasized in 
many literatures (Boll et al. 1998；Gunther & Voisard 1998；Kashyap & Sheth 1996；Turner 
2004). There are also metadata standards been created and implemented (Federal Geographic 
Data Committee (FGDC) 2006, International Organization for Standardization (ISO) 2003). 
However, the usage of metadata is still facing some problems. The first problem occurs because 
the domain of vector maps is too wide for any single standard to give an ultimate solution to 
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it. Furthermore, the storage of metadata is another problem that needs to be resolved. There 
are two kinds of metadata storage: external and internal storing. In external storing, which 
nowadays is used by vector maps in GISs, metadata is stored in a separate file from the actual 
data content. Although, this allows better use of metadata in dedicated metadata management 
servers. These database servers can then search and store metadata information and only have 
references to the actual data. It is that the vector map is not guaranteed to exist and this easily 
leads to the situation where metadata server contains lots of ghost records, that does not have 
the corresponding content anywhere on the Web available or at least the record can not help to 
find it. The situation will cause serious defects while implementing data mashup. 

For solving the problem, an internal storing mechanism to embed metadata in the same 
vector map is proposed in this paper to store metadata in the same file as the data and is 
thus also available if the data itself is available. This paper presents a mechanism by using a 
reversible steganographic algorithm to embed metadata in vector maps with high capacity but 
low distortion. In our approach, we can achieve the embedding capacity of 2(n-2) bits where 
n is the vertex numbers of a vector map. To the best of our knowledge, our capacity is much 
higher than that can provide by the current state of the art reversible steganography algorithms 
for vector maps, such as shown in several researches (Shao et al. 2006；Voigt et al. 2004；
Wang et al. 2007). In addition, we only need to record extra little information to restore original 
coordinate value with insignificant distortion that is within the standard vector map accuracy. 

We arrange the remains of this paper as follows. Section 2 surveys related works. We 
present details of our algorithm including the data embedding and data extracting processes in 
section 3 and 4, respectively. Section 5 gives experimental results. Conclusions and future works 
are described in the final section.

2. RELATED WORKS

To the best of our knowledge few works have been done on using reversible steganography 
algorithm to integrate metadata with vector maps. Most of them are focusing on embedding 
secret message to 2D vector maps (Chen et al. 2007；Shao et al. 2006；Voigt et al. 2004；
Wang & Wang 2006) or images (Kim et al. 2008；Tian 2003). Hence the section will begin 
with an overview of steganography techniques. Further discussion will focus on steganography 
techniques that apply to vector maps. Finally, the metadata standards and applications, especially 
for vector maps used in GIS applications will be reviewed. 

2.1 Steganography Overview

Steganography is the art and science of communicating in such a way that it hides the 
existence of the secret message during mutual communication. The main goal of steganography 
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is to hide a secret message S in a cover medium D, to produce a stego medium D', practically 
indistinguishable from D by people, in such a way that an eavesdropper cannot detect the 
presence of S in D'. On the contrary, the main goal of watermarking is to embed watermarks W 
in the host medium D to obtain a watermarked medium D' in such a way that an attacker cannot 
remove or replace W in D'. 

Bogomjakov have defined that steganography (or, more simply, data-hiding) is the 
science of hiding messages in media in such a way that even the existence of the message 
remains undetected to all but the recipient (Bogomjakov et al. 2008). In the aspect of secret 
communication, steganography is defined as the art and science of communicating in a way 
which hides the existence of the communication. In the other word, steganography is the 
technique of hiding secret messages or data within other media to all eyes except those of the 
sender and intended receiver (Kahn 1996).

Petitcolas mentioned that (Petitcolas et al. 1999), there has been a growing interest, by 
different research communities, in the fields of steganography, digital watermarking and 
fingerprinting. This led to some confusion in the terminology. However, Pfitzmann (1996) has 
proposed a classification of information hiding techniques as shown in Figure 1. According to 
the figure, the purpose of steganography is having a covert communication between two parties 
whose existence is unknown to possible attackers; a successful attack consists in detecting 
the existence of this communication. Copyright marking, which is the root of watermarking 
techniques, has the additional requirement of robustness against possible attacks.
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Popa (Cummins et al. 2004；Popa 1998) had proposed another diagram shown in 
Figure 2. The diagram shows that two general directions are distinguished within 
steganography: protection against detection and protection against removal. Protection 
against detection is achieved using schemes that do not modify in a visible way the 
original unmarked object; the modifications are not visible by the humans or by the 
computers. Protection against removal supposes that the scheme should be robust to 
common attacks; it is impossible to remove the hidden data without degrading the 
object’s quality and rendering it useless. 

According to Figure 2, steganography can be used to hide a message intended 
for later retrieval by a specific individual or group. In this case, the aim is to prevent 
the message being detected by any other party. The other major area of steganography 
is copyright marking, where the message to be inserted is used to assert copyright 
over a document. This can be further divided into watermarking and fingerprinting. 
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Popa (Cummins et al. 2004；Popa 1998) had proposed another diagram shown in Figure 
2. The diagram shows that two general directions are distinguished within steganography: 
protection against detection and protection against removal. Protection against detection is 
achieved using schemes that do not modify in a visible way the original unmarked object; the 
modifications are not visible by the humans or by the computers. Protection against removal 
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supposes that the scheme should be robust to common attacks; it is impossible to remove the 
hidden data without degrading the object's quality and rendering it useless.
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detected by any other party. The other major area of steganography is copyright marking, where 
the message to be inserted is used to assert copyright over a document. This can be further 
divided into watermarking and fingerprinting.
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Figure 2: Two general directions distinguished within steganography (Popa 1998)

Furthermore, we compare the differences between steganography and encryption. Although 
they are both used to ensure data confidentiality, the main difference between them is that with 
encryption anybody can see that both parties are communicating in secret. Steganography 
hides the existence of a secret message and in the best case nobody can see that both parties 
are communicating in secret. This makes steganography suitable for some tasks for which 
encryption aren't, such as data embedding. Adding encrypted copyright information to a file 
could be easy to remove but embedding it within the contents of the file itself can prevent it 
being easily identified and removed.

2.2 Reversible Steganography on Vector Maps 

In computer-based steganography, digital media file, such as images, audio, and 3D models, 
are used as innocuous-looking hosts for embedding secret messages. There are plenty of ways 
to hide messages within images. This is because an image, being a raster data structure with 
array of pixels, typically contains an enormous amount of redundant information. In contrast to 
raster data structure, vector map is a data structure uses sequences of coordinates to represent 
points, lines, and polygons on a map. It is not easy to hide messages within vector maps, since 
each of these units is composed simply as a series of one or more coordinate points and have 
no redundant information being stored. In addition, hiding data in vector maps will generally 
induce some distortions to the coordinates of the vector data (Wang et al.  2007). Meanwhile, 
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due to the strict GIS application requirements on accuracy of vector maps, modifications to map 
data are generally undesired. Therefore, as pointed out by Chen (Chen et al. 2007), reversible 
schemes are required for applying steganography in vector maps because the distortion can be 
removed after hiding data been extracted. 

There are some works have been done on data hiding with vector maps. Voigt (Voigt et al. 
2004) first proposed the method of reversibly hiding data in vector maps. They hide the data 
by modifying the integer discrete cosine transform mechanism seems to be complex and the 
data hiding capacity is low in this method. Schulz and Voigt (Schulz & Voigt 2004) proposed a 
non-reversible data hiding scheme with capacity of 0.1 bit per vertex. Wang (Wang et al. 2007) 
proposed two reversible data hiding schemes for vector maps based on difference expansion 
under the concept of watermarking techniques. The first one is coordinate-based scheme where 
the correlation of map coordinates is utilized for data hiding. The hidden data are embedded by 
changing the coordinate differences between the adjacent vertices of the map. The scheme can 
achieve the highest capacity of 0.279 bit/vertex with RMSE value of 0.00295 in the maps with 
dense vertices whereas the performance could be seriously decreased for those maps whose 
coordinates exhibit low correlation. The second scheme uses the Manhattan distances between 
adjacent vertices as the cover data to implement a distance-based scheme. The distance-based 
scheme can achieve the highest capacity of 0.262 bit/vertex with RMSE value of 0.00055 and 
is suitable for the maps whose extracted distances exhibit high correlation. Chen (Chen et 
al.  2007) proposed a reversible data hiding algorithm for vector maps in spatial domain. The 
algorithm performs high data capacity where the distortion rate is under 0.02%. In this paper, we 
use Chen's algorithm as a base for developing our method to embed metadata in vector maps.

In our approach, we first adopt PCA to produce two principal axes of the 2D vector map. 
Next, we sort vertices according to coordinate values of two axes. We then use multi-layer 
concept to classify the two sorting axes: the odd sorting list and even sorting list. The coordinate 
value of the modulation is individually embedded into the odd or even sorting lists. In this 
method we can not only extracting data, but also recover to the original coordinate value while 
extracting the information. In our approach, we can embed a bit in each interval. Hence we can 
embed 2(n-2) bits of data where n is the vertex numbers of a vector map. In addition, we only 
need to record extra little information to restore original coordinate value.

2.3 Metadata Standard and Definition 

 Metadata is defined as "data about data". Metadata of vector maps provide the background 
information of the content, quality, condition, and other appropriate characteristics of the 
vector maps. The International Organization for Standardization (ISO) proposes several closely 
related definitions, such as data for describing and documenting data; data about datasets and 
usage aspects of it; and data about the content, quality, condition, and other characteristics of 
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data (International Organization for Standardization (ISO) 2003). These definition is similar 
to that proposed by Federal Geographic Data Committee (FGDC) (Federal Geographic Data 
Committee (FGDC) 2006).

In GIS applications, metadata is a formal documentation describing the characteristics of 
a specific geospatial data set. For example, metadata may describe the details of vector maps 
include: what it is about, where it is to be found, what is the quality of the data for a specified 
purpose, what spatial location does it cover and over what time period, when and where the data 
was collected and by whom, what purposes the data has been used for, and what related data 
sets are available. In general, metadata should at least include dataset names with descriptions of 
what they contain, coordinate system and datum, theoretical accuracy, source document names 
with dates and scales, data conversion methods, update history, lists of field names and what 
they contain, and keys to any codes used in these fields.

ISO 19115:2003 (2003) has formally defined the schema required for describing 
geographic information and services(International Organization for Standardization (ISO) 
2003). It provides information about the identification, the extent, the quality, the spatial and 
temporal schema, spatial reference, and distribution of digital geographic data. It also defines 
mandatory and conditional metadata sections, entities, and elements. The details of ISO 19115 
core metadata elements are shown in Table 1

Table 1: ISO 19115 Core Metadata Elements

Mandatory Elements Conditional Elements

1. Dataset title
2. Dataset reference date
3. Dataset language
4. Dataset topic category
5. Abstract
6. Metadata point of contact
7. Metadata date stamp

1. Dataset responsible party
2. Geographic location by coordinates
3. Dataset character set
4. Spatial resolution
5. Distribution format
6. Spatial representation type
7. Reference system
8. Lineage statement
9. On-line Resource
10. Metadata file identifier
11. Metadata standard name
12. Metadata standard version
13. Metadata language

Another metadata standard for geospatial data is defined by Dublin Core Metadata 
Initiative (DCMI) (Dublin Core Metadata Initiative (DCMI) 1998). The metadata elements 
fall into three groups which roughly indicate the class or scope of information stored in them, 
which are elements related mainly to the Content of the resource, elements related mainly to the 
resource when viewed as Intellectual Property, and elements related mainly to the Instantiation 
of the resource. These elements are shown in table 2.
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Table 2: Dublin Core Metadata Elements

Content Intellectual Property Instantiation

1. Title   
2. Subject
3. Description
4. Type
5. Source
6. Relation
7. Coverage

1. Creator
2. Publisher
3. Contributor
4. Rights

1. Date
2. Format
3. Identifier
4. Language

Recall that we will present a mechanism by using reversible steganographic algorithm to 
embed metadata in vector maps with high capacity but low distortion for data mashup service. 
In our approach, we can embed a bit in each interval constructed from the coordinates of 
vertex. As a result, we can achieve the embedding capacity of 2(n-2) bits where n is the vertex 
numbers of a vector map. Although. to the best of our knowledge, our capacity is much higher 
than that can provide by the current state of art reversible steganography algorithms for vector 
maps, such as shown in several researches (Shao et al. 2006；Voigt et al. 2004；Wang et al. 
2007). The embedding capacity is limited by the vertex numbers of vector maps. For preventing 
the overflow of embedding capacity, we will just employ the ISO 19115 metadata standard 
in this paper. For vector maps with small amount vertex, only mandatory metadata elements 
are embedded. For vector maps with sufficient amount of vertex, all metadata elements are 
embedded. 

The metadata definition and the space defined for the mandatory and conditional elements 
are shown in table 3 and table 4. 

Table 3: The definition of mandatory metadata elements used in this paper

Mandatory Elements Data Type Data Space(Byte) Definition

1. Dataset title Char 100 Define the name of the map

2. Dataset reference date Date 10 dataset create date

3. Dataset language Char 20 dataset in language

4. Dataset topic category Char 20 defined according to  ISO 19115 
category 

5. Abstract String 250 brief description of the map

6.  Metadata point of 
contact Char 90 dataset contact point

7. Metadata date stamp Date 10 date that acquire the map

Total Space 500
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Table 4: The definition of conditional metadata elements used in this paper

Conditional Elements Data Type Data Space(Byte) Definition

1. Dataset responsible party String 200 Define the organization that 
responsible to the vector map

2. Geographic location by coordinates Number 100 Record the coordinate value the 
boundary box of the vector map

3. Dataset character set Char 20 Show the character set used by 
the vector map

4. Spatial resolution Char 20 Record the spatial resolution

5. Distribution format Char 30 Define the format for distribution

6. Spatial representation type Char 20 Record the Spatial representation 
type of the vector map

7. Reference system Char 30 Record the reference system of 
the vector map

8. Lineage statement String 200 Record the lineage of the vector 
map

9. On-line Resource String 150 Record the address for online 
access of the vector map

10. Metadata file identifier String 60 Show the identifier of the 
metadata

11. Metadata standard name Char 30 Show the adapted metadata 
standard

12. Metadata standard version Char 5 Define the metadata standard 
version

13. Metadata language Char 20 Define the metadata language

Total Space 865

     
We can see from table 3 and table 4 that the embedding capacity should have at least 500 

bytes, which is 4000 bits, in order to embed the mandatory elements in a vector map. Since the 
conditional elements should not be embedded alone, the embedding capacity should have at 
least 1365 bytes, which is 10920 bits, in order to embed the conditional elements in a vector 
map. This will be a challenge and limitation to the method proposed in this paper. 

3. METADATA EMBEDDING PROCESSES

This section presents in details our reversible steganographic algorithm for embedding 
metadata in vector maps. Figure 3 shows the diagram of metadata embedding process, which 
contains metadata processing phase, cover map transformation phase and metadata embedding 
phase. 
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3.1 The Metadata Processing Phase

Given a cover vector map, we calculate its amount of vertex to decide the metadata volume 
to be embedded. Then we transform the proper mandatory and conditional metadata elements 
to XML format. The XML file is then transfer to binary format and ready for embedding in its 
associated cover map.
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3.2 The Cover Map Transformation Phase 

Given a cover vector map in the World coordinates, in the transformation phase, 
we transform these vertices to the PCA coordinates. We generate two lists, the odd 
sorting list and the even sorting list in this process. In the data embedding phase, we 
input the metadata and embed them into these two lists. 

The transformation phase is the initial phase in our method. Suppose a cover 
vector map contains n vertices located originally in the two-dimensional World 
coordinate system, which has two orthogonal axes, X-axis and Y-axis. We denote 
these n vertices as W={(a1, b1), (a2, b2), …, (an, bn)}, where the suffix “W” indicates 
that these vertices are currently in the World coordinate system. We complete the 
transformation phase using the following four steps of operation.  

First, we compute the gravity center (G) of the cover vector map. Then, we 
employ a principal component analysis (PCA) technique to produce two principal 
axes for the cover map in the second step. Without loss of the generality, we refer to 
two principal axes as the PCA X-axis and the PCA Y-axis, respectively. Surely, given 
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3.2 The Cover Map Transformation Phase

Given a cover vector map in the World coordinates, in the transformation phase, we 
transform these vertices to the PCA coordinates. We generate two lists, the odd sorting list and 
the even sorting list in this process. In the data embedding phase, we input the metadata and 
embed them into these two lists.

The transformation phase is the initial phase in our method. Suppose a cover vector map 
contains n vertices located originally in the two-dimensional World coordinate system, which 
has two orthogonal axes, X-axis and Y-axis. We denote these n vertices as W={(a1, b1), (a2, b2), ..., 
(an, bn)}, where the suffix "W" indicates that these vertices are currently in the World coordinate 
system. We complete the transformation phase using the following four steps of operation. 

First, we compute the gravity center (G) of the cover vector map. Then, we employ a 
principal component analysis (PCA) technique to produce two principal axes for the cover map 
in the second step. Without loss of the generality, we refer to two principal axes as the PCA 
X-axis and the PCA Y-axis, respectively. Surely, given these two axes and the gravity center G, 
we can construct a unique PCA coordinate system. This allows us to transform the coordinates 
of vertices in the cover vector map to the PCA coordinate system in the third step. After this 
step, the original n vertices W={(a1, b1), (a2, b2), ..., (an, bn)} becomes in the PCA coordinate 
system, which can be expressed as PCA ={(A1, B1), (A2, B2), ..., (An, Bn)}.

In the final step, we sort vertices with respect to the PCA X-axis coordinates in the PCA 
X-axis. This produces a sorting list, LX, which contains n PCA X-axis coordinates. We referred 
to each "point" in the LX as X1, X2, ..., Xn, and the sorting list as LX = { X1, X2, ..., Xn }. In 
this expression, X1 represents the smallest PCA X-axis coordinates, while Xn the largest one. 
Similarly, we apply the sorting operation on the vertex coordinates with respect to the PCA 
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Y-axis, producing a list, LY, with PCA Y-axis coordinates Y1, Y2, ..., Yn. With the extremes in 
the PCA X-axis and PCA Y-axis, we can construct a bounding box (BB) encompassing the cover 
vector map in the PCA coordinate system. The four boundary vertices of the bounding box in 
a counterclockwise order are BV1=(X1, Y1), BV2=(Xn, Y1), BV3=(Xn, Yn), and BV4=(X1, Yn). 
Given two extreme boundary vertices (X1, Y1) and (Xn, Yn), we can compute the diagonal length 
of the bounding box (DLB) using the common Euclidean distance formula, where 

                                       DLB = [ (Xn－X1)2 + (Yn－Y1)2]0.5                                              (1)

These four boundary vertices may not be any of vertices in the cover vector map. Instead, 
they represent the two extreme boundaries in the PCA X-axis and PCA Y-axis with respect to 
the gravity G. 

3.3 The Metadata Embedding and Reversible Mechanism

The data embedding process is used to embed metadata in vector maps. We complete this 
process using the following two steps. 
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have produced a sorting list, LX, which contains n PCA X-axis coordinates in the transformation 
phase, where each "point" in the LX is referred to as X1, X2, ..., Xn, and the sorting list as LX = 
{ X1, X2, ..., Xn}. Given this sorting list, we can further classify index into the odd indices or 
the even indices, generating two lists, the odd sorting list and the even sorting list, respectively. 
Figure 3 illustrates the generation of the odd sorting list and the even sorting list. We denote the 
odd sorting list being generated as OLX and the even sorting list as ELX, respectively. Figure 
4 shows the odd sorting list OLX={X1, X3, X5, ...,} and the even sorting list ELX= {X2, X4, X6, 
...}. Observing the original sorting list LX = { X1, X2, ..., Xn } we can compose a number of odd 
intervals which takes two "points" with odd indices as the boundaries. This interval contains 
one "point" that has an even index. For example, X1 and X3 are two "points" with odd indices 
and the interval contains another "point" X2 with an even index. We denote this interval as {X1-
X2-X3}. Similarly, we can build a number of even intervals composed by two "points" with even 
indices and each interval contains another "point" with an odd index. 

 
Figure 4 Constructing Odd and even list in the PCA X-axis 

In the second step, we embed the metadata into the “point” X2 in the first 
interval constructed from the odd sorting list OLX, which can be represented as 
{X1-X2-X3} before the data embedding. The data embedding into the “point” X2 is to 
shift it to an appropriate position referred to as X’2 (see the description later). Clearly, 
we will generate a new interval {X1-X’2-X3} after the data embedding. Then, we 
embed another bit into the “point” X3 in the first interval constructed from the even 
sorting list ELX; i.e., we embed a bit into the interval {X’2-X3-X4}. Again, the 
embedding will shift the “point” X3 to an approximate position X’3, resulting a new 
interval {X’2-X’3-X4}, where each “point” X’2 or X’3 has embedded one bit of 
metadata. Similarly, we embed the third bit into the “point” X4 of the second interval 
constructed from the odd sorting list again. Followed this embedding approach, we 
embed one bit of metadata in the odd sorting list first and then embed another bit in 
the even sorting list. This alternation embedding approach can allow us to embed one 
bit of metadata into (n-2) vertices; namely, X2, X3, …, Xn-1, keeping the first “point” 
X1 and the last “point” Xn intact. Clearly, our algorithm can embed 2(n-2) bits when 
taking into consideration of odd sorting lists and even sorting list with respect to both 
the PCA X-axis and PCA Y-axis. 

Now, we illustrate how to embed a bit, either “0” or “1”, into an interval. We 
assume the interval is {Xi-Xi+1-Xi+2}, where the boundary points are “Xi” and “Xi+2”, 
and the “point” that can be embed a single bit is Xi+1, as shown in Figure 5. We first 
divide the interval into two equal sub-intervals. The left sub-interval is defined as with 
the status value of “0” and the right sub-interval is with the status value of “1”. The 
status value of the “point” Xi+1 for data embedding is decided base on the sub-interval 
it is located. For example, the “point” Xi+1 shown in Figure 5 is on the status “0” since 
it locates within the left sub-interval. It is on the status “1” if it locates within the right 
sub-interval.  

 
Figure 5 The sub-interval status value of “0” and “1” defined between Xi and Xi+2 

Next, we embed a bit of metadata into this interval. The scenario behind the 
embedding is to move Xi+1 to the appropriate sub-interval which represents the same 
bit value as the metadata to be embedded. In particular, according to Figure 5, if we 
intend to embed a bit of metadata “0”, we simply do nothing, since Xi+1 has located at 
the status of “0”. However, if we mean to embed a metadata “1” into this interval, we 
need to move Xi+1 to a point at the right sub-interval representing the status of “1”. To 
ease the expression, we use the symbol X’i+1 to indicate that it has conveyed a bit of 
metadata. Also, Xi+1 is referred to as the cover “point”, while X’i+1 is called the stego 
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embedding is decided base on the sub-interval it is located. For example, the "point" Xi+1 shown 
in Figure 5 is on the status "0" since it locates within the left sub-interval. It is on the status "1" 
if it locates within the right sub-interval. 
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Next, we embed a bit of metadata into this interval. The scenario behind the 
embedding is to move Xi+1 to the appropriate sub-interval which represents the same 
bit value as the metadata to be embedded. In particular, according to Figure 5, if we 
intend to embed a bit of metadata “0”, we simply do nothing, since Xi+1 has located at 
the status of “0”. However, if we mean to embed a metadata “1” into this interval, we 
need to move Xi+1 to a point at the right sub-interval representing the status of “1”. To 
ease the expression, we use the symbol X’i+1 to indicate that it has conveyed a bit of 
metadata. Also, Xi+1 is referred to as the cover “point”, while X’i+1 is called the stego 
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Figure 5: The sub-interval status value of "0" and "1" defined between Xi and Xi+2

 Next, we embed a bit of metadata into this interval. The scenario behind the embedding is 
to move Xi+1 to the appropriate sub-interval which represents the same bit value as the metadata 
to be embedded. In particular, according to Figure 5, if we intend to embed a bit of metadata 
"0", we simply do nothing, since Xi+1 has located at the status of "0". However, if we mean to 
embed a metadata "1" into this interval, we need to move Xi+1 to a point at the right sub-interval 
representing the status of "1". To ease the expression, we use the symbol X'i+1 to indicate that it 
has conveyed a bit of metadata. Also, Xi+1 is referred to as the cover "point", while X'i+1 is called 
the stego "point." According to the design, the PCA X-coordinates of the cover vertex will be 
changed after embedding the metadata.
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Surely, if an algorithm does not provide the reversibility feature, moving Xi+1 to any 
position on the right sub-interval will allow us to embed one bit of metadata "1". However, to 
consider the reversible mechanism, we need to design the position on which the "point" Xi+1 
needs to be moved to. Meanwhile, for security reason, we need to record a secret key in order to 
represent the order of intervals on which we embed a bit. The process left is to where we shall 
move the cover "point" Xi+1. Figures 6 and 7 illustrate all the possible position alternation of a 
cover "point" Xi+1, depending on the metadata to be conveyed.

“point.” According to the design, the PCA X-coordinates of the cover vertex will be 
changed after embedding the metadata. 

Surely, if an algorithm does not provide the reversibility feature, moving Xi+1 to 
any position on the right sub-interval will allow us to embed one bit of metadata “1”. 
However, to consider the reversible mechanism, we need to design the position on 
which the “point” Xi+1 needs to be moved to. Meanwhile, for security reason, we need 
to record a secret key in order to represent the order of intervals on which we embed a 
bit. The process left is to where we shall move the cover “point” Xi+1. Figures 6 and 7 
illustrate all the possible position alternation of a cover “point” Xi+1, depending on the 
metadata to be conveyed. 
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Figure 6 All possible position alternation of cover “point” Xi+1 where Xi+1 is 

originated in the left sub-interval with the status value “0”   

In Figure 6, we show the case that embeds a bit of metadata into the cover point 
“Xi+1” within an interval with two boundary “points” Xi and Xi+2. In light of the 
description given above, the cover “point” Xi will become the stego “point” X’i+1 after 
embedding one bit of message. There are two possible cases that are needed to be 
considered. We can first assume that we intend to embed a bit “0”. To convey a 
metadata we need to shift Xi+1 to an “appropriate” position so that Xi+1 becomes X’i+1, 
indicating that it has now conveyed a metadata of “0”. In particular, the final X’i+1 is 
at a position that has a distance R0 away from Hl. Here, Hl represents the middle 
position of the left sub-interval, and R0 is one fourth of the distance between Hl and 
the original Xi+1. Equations (2) and (3) present mathematical expression for R0 and 
X’i+1. Using this approach, we convey one secret bit of message “0” at the stego 
“point” X’i+1.  

                  R0 = (Xi+1－Hl) /4                          (2) 

                  X’i+1 = Hl + (Xi+1－Hl) /4                    (3) 

Now, we consider the case when we intend to embed one bit of metadata “1”. 
Clearly, we need to move the cover “point” Xi+1 to become a stego “point” X’’i+1, 
which must be located on the right half of the sub-interval with the status of “1”. 
Followed the approach described above, the “appropriate” position of X’’i+1 has a 
distance R1 away from Hr. shown in Equations (4). Again, Hr represents the middle 
position of the right sub-interval. The new coordinate of X’’i+1 is shown in Equations 
(5).  

R1 = (Xi+1－Hr) /4                          (4) 
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Figure 6: All possible position alternation of cover "point" Xi+1 where Xi+1 is
originated in the left sub-interval with the status value "0"  

In Figure 6, we show the case that embeds a bit of metadata into the cover point "Xi+1" 
within an interval with two boundary "points" Xi and Xi+2. In light of the description given 
above, the cover "point" Xi will become the stego "point" X'i+1 after embedding one bit of 
message. There are two possible cases that are needed to be considered. We can first assume that 
we intend to embed a bit "0". To convey a metadata we need to shift Xi+1 to an "appropriate" 
position so that Xi+1 becomes X'i+1, indicating that it has now conveyed a metadata of "0". In 
particular, the final X'i+1 is at a position that has a distance R0 away from Hl. Here, Hl represents 
the middle position of the left sub-interval, and R0 is one fourth of the distance between Hl and 
the original Xi+1. Equations (2) and (3) present mathematical expression for R0 and X'i+1. Using 
this approach, we convey one secret bit of message "0" at the stego "point" X'i+1. 

                                                         R0 = (Xi+1－Hl) /4                                                               (2)

                                                         X'i+1 = Hl + (Xi+1－Hl) /4                                                     (3)

Now, we consider the case when we intend to embed one bit of metadata "1". Clearly, we 
need to move the cover "point" Xi+1 to become a stego "point" X''i+1, which must be located on 
the right half of the sub-interval with the status of "1". Followed the approach described above, 
the "appropriate" position of X''i+1 has a distance R1 away from Hr. shown in Equations (4). 
Again, Hr represents the middle position of the right sub-interval. The new coordinate of X''i+1 is 
shown in Equations (5). 
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                                                      R1 = (Xi+1－Hr) /4                                                          (4)

                                                X''i+1 = Hr + (Xi+1－Hr) /4                                                    (5)

In contrast to Figure 6, we illustrate in Figure 7 the case when the original cover "point" 
Xi+1 is located on the sub-interval with the status value of "1". Similarly, if we intend to embed 
a metadata of "0", we shift the cover "point" Xi+1 to X'i+1 on the left sub-interval with a distance 
R0 away from the middle position of the left sub-interval. Otherwise, we embed a metadata of 
"1" by moving the stego "point" Xi+1 to X''i+1 on the right sub-interval with a distance R1 away 
from the middle position. 

We apply the same embedding step to every interval in the odd sorting list. This means that 
the "points" with the even index X2, X4, X6, ..., Xn-2 will convey one bit of metadata. With regard 
to the even sorting list, similarly, we embed one bit of metadata at each "point" X3, X5, X7, ..., 
Xn-1. However, we do not change the first "point" X1 and the last "point" Xn. We need these two 
points fixed to ensure that the point in each interval can be reversed to its original position. As 
a result, we embed a total of (n-2)/2 bits in the odd sorting list and another (n-2)/2 bits in the 
even sorting list in the 2D cover vector map, where n represents numbers of vertices in the map. 
Similarly, we embed n-2 bits of message in the PCA Y-axis. As a result, we can embed the total 
capacity of 2(n-2) bits in a vector map, where n is the amount of vertex number of the map. 

                  X’’i+1 = Hr + (Xi+1－Hr) /4                    (5) 

In contrast to Figure 6, we illustrate in Figure 7 the case when the original cover 
“point” Xi+1 is located on the sub-interval with the status value of “1”. Similarly, if we 
intend to embed a metadata of “0”, we shift the cover “point” Xi+1 to X’i+1 on the left 
sub-interval with a distance R0 away from the middle position of the left sub-interval. 
Otherwise, we embed a metadata of “1” by moving the stego “point” Xi+1 to X’’i+1 on 
the right sub-interval with a distance R1 away from the middle position.  

We apply the same embedding step to every interval in the odd sorting list. This 
means that the “points” with the even index X2, X4, X6, …, Xn-2 will convey one bit of 
metadata. With regard to the even sorting list, similarly, we embed one bit of metadata 
at each “point” X3, X5, X7, …, Xn-1. However, we do not change the first “point” X1 
and the last “point” Xn. We need these two points fixed to ensure that the point in each 
interval can be reversed to its original position. As a result, we embed a total of 
(n-2)/2 bits in the odd sorting list and another (n-2)/2 bits in the even sorting list in the 
2D cover vector map, where n represents numbers of vertices in the map. Similarly, 
we embed n-2 bits of message in the PCA Y-axis. As a result, we can embed the total 
capacity of 2(n-2) bits in a vector map, where n is the amount of vertex number of the 
map.  
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Figure 7 All possible position alternation of cover “point” Xi+1 where Xi+1 is 
originated in the right sub-interval with the status value “1”   

 Our approach need to hold some side information during the embedding 
processes. The information required to be held includes two principal axes plus the 
gravity center of both the cover model and stego model, the length of the bounding 
volume, and a secret key. The first two are used to against translation, rotating, 
uniform scaling for the stego map. The last one is to enhance the security of the data 
hidden in stego map. It is also used for extracting the hidden data from stego map. 

4. METADATA EXTRACTION AND RESTORING 
PROCESSES 

There are three phases in the metadata extraction and restoring processes. They 
are stego map rectifying phase, metadata extraction phase and metadata restoring 
phase. Figure shows the diagram of these processes. The details of these phases are 
discussed in this section.  
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Figure 7: All possible position alternation of cover "point" Xi+1 where Xi+1 is
originated in the right sub-interval with the status value "1"  

Our approach need to hold some side information during the embedding processes. The 
information required to be held includes two principal axes plus the gravity center of both the 
cover model and stego model, the length of the bounding volume, and a secret key. The first 
two are used to against translation, rotating, uniform scaling for the stego map. The last one is 
to enhance the security of the data hidden in stego map. It is also used for extracting the hidden 
data from stego map.



Using Reversible Steganography Algorithm to Embed Metadata in Vector Maps 157

4. METADATA EXTRACTION AND
RESTORING PROCESSES

There are three phases in the metadata extraction and restoring processes. They are stego 
map rectifying phase, metadata extraction phase and metadata restoring phase. Figure shows the 
diagram of these processes. The details of these phases are discussed in this section. 

 

Figure 8 Metadata extracting and restoring processes diagram 

4.1 Stego Map Rectifying Phase 

Before data extraction, the stego map is needed to be rectified by using two side 
information derived during metadata embedding process. The side information used 
for the rectification includes two PCA axes and the gravity center value of both the 
cover map and stego map. The stego map rectifying phase is used to prevent the errors 
from displacement and transformation attacks to the stego map.  

4.2 Metadata Extraction Phase 

Once the stego maps have been rectified, we still need to implement the 
preprocessing phase which is exactly the same as used in metadata embedding 
processes. After processing on the stego map, the metadata extraction must begin 
from the even sorting list first, since we need to ensure that the interval in the even 
sorting list is reversed to its original form. Once metadata extraction in even sorting 
list is done, we can then extract the metadata from the odd sorting list. 

We use the processing on the PCA X-axis to illustrate the data extraction process. 
We then take the next three steps for each PCA axis to extract the secret message and 
produce the recovered cover “point”.  

Step-1: Find an interval {X’i-X’i+1-X’i+2}, which has been embedded with the 
metadata according to the secret key K.  

Step-2: Extract a data bit from the position of X’i+1 in the interval 
{X’i-X’i+1-X’i+2}. In particular, the data bit is set to 0 if X’i+1 is located 
on the left of the sub-interval and 1 otherwise.  

Step-3: Restore the recovered cover “point” 1iX + by Equation (6), where Hl is the 
middle position of the left sub-interval. The derivation of Equation (6) is 
using a simple mathematical transposition from the original embedding 
expression for the stego “point” '

1iX + where . 
Clearly, we can derive a similar recovered 

'
1 1( )i l i lX H X H+ += + − / 4

1iX + using the middle position 
of the right sub-interval Hr. 
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Figure 8: Metadata extracting and restoring processes diagram

4.1 Stego Map Rectifying Phase

Before data extraction, the stego map is needed to be rectified by using two side 
information derived during metadata embedding process. The side information used for the 
rectification includes two PCA axes and the gravity center value of both the cover map and 
stego map. The stego map rectifying phase is used to prevent the errors from displacement and 
transformation attacks to the stego map. 

4.2 Metadata Extraction Phase

Once the stego maps have been rectified, we still need to implement the preprocessing 
phase which is exactly the same as used in metadata embedding processes. After processing on 
the stego map, the metadata extraction must begin from the even sorting list first, since we need 
to ensure that the interval in the even sorting list is reversed to its original form. Once metadata 
extraction in even sorting list is done, we can then extract the metadata from the odd sorting list.

We use the processing on the PCA X-axis to illustrate the data extraction process. We 
then take the next three steps for each PCA axis to extract the secret message and produce the 
recovered cover "point". 

Step-1:  Find an interval {X'i-X'i+1-X'i+2}, which has been embedded with the metadata 
according to the secret key K. 

Step-2:  Extract a data bit from the position of X'i+1 in the interval {X'i-X'i+1-X'i+2}. In 
particular, the data bit is set to 0 if X'i+1 is located on the left of the sub-interval and 
1 otherwise. 
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Step-3:  Restore the recovered cover "point" Xi+1 by Equation (6), where Hl is the middle 
position of the left sub-interval. The derivation of Equation (6) is using a simple 
mathematical transposition from the original embedding expression for the 
stego "point" X'i+1 where X'i+1 = Hl+(Xi+1-Hl) /4. Clearly, we can derive a similar 
recovered Xi+1 using the middle position of the right sub-interval Hr.

                               Xi+1 = 4×X'i+1 -3Hi                                                    (6)

Step-4:  Repeat Step-1 and 3 above for all the intervals on a given stego model until 
the embedded data have been extracted from each stego "point" and the cover 
"point" is recovered. We apply the same processes to the PCA Y-axis to extract the 
embedded data and recover the cover "point". 

Finally, we apply PCA inverse transformation to the coordinate value of each vertex. This 
transforms the vertices in the PCA coordinate system back to the World coordinate system, 
generating the recovered map.

4.3 Metadata Restoring Phase

During the metadata extraction process, a binary file is extracted from the stego map. The 
binary file contains the metadata that had been embedded in cover map. We then transform the 
binary file to XML file metadata elements. Finally the XML file is restored to metadata table.

5. EXPERIMENTAL RESULTS

We now present our experimental results. The software architecture for implementing the 
experiments, the factors that are commonly used in GISs to evaluate accuracy of vector maps, 
the features of the vector maps for our experiments and evaluation of the experimental results 
are described in this section.

5.1 Software Architecture

We use Java programming language to implement the main program for experiments. 
Results were collected on a personal computer with a 3.4GHz processor and 2 GB memory. 
We also use the concept of "mashup" to include some open source programs and application 
programming interface (API) to develop the system for metadata embedding. The software 
architecture is shown in Figure 9.
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Step-4: Repeat Step-1 and 3 above for all the intervals on a given stego model 
until the embedded data have been extracted from each stego “point” and 
the cover “point” is recovered. We apply the same processes to the PCA 
Y-axis to extract the embedded data and recover the cover “point”.  

Finally, we apply PCA inverse transformation to the coordinate value of each 
vertex. This transforms the vertices in the PCA coordinate system back to the World 
coordinate system, generating the recovered map. 

4.3 Metadata Restoring Phase 

During the metadata extraction process, a binary file is extracted from the stego 
map. The binary file contains the metadata that had been embedded in cover map. We 
then transform the binary file to XML file metadata elements. Finally the XML file is 
restored to metadata table. 

5. EXPERIMENTAL RESULTS 

We now present our experimental results. The software architecture for 
implementing the experiments, the factors that are commonly used in GISs to evaluate 
accuracy of vector maps, the features of the vector maps for our experiments and 
evaluation of the experimental results are described in this section. 

5.1 Software Architecture 

We use Java programming language to implement the main program for 
experiments. Results were collected on a personal computer with a 3.4GHz processor 
and 2 GB memory. We also use the concept of “mashup” to include some open source 
programs and application programming interface (API) to develop the system for 
metadata embedding. The software architecture is shown in Figure 9. 

 

Figure 9 The software architecture of metadata embedding system 
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 Figure 9: The software architecture of metadata embedding system

The details of each component in the software architecture are described as follows:
●  Steganography application with Java: The benefits to use Java language to develop 

application are such as encapsulation, abstraction, inheritance and polymorphism. 
Rely on above characters, it is flexible and can reuse the object to reduce develop 
cost.

●  Eclipse Java IDE: It is free, open-source integrated development environment (IDE). 
And there are many Java-related plug-in for Eclipse.

●  JavaDBF: This is a plug-in package for the application. Because metadata can be 
accessed by DBF file (*.dbf), this package can access format of DBF file.

●  JMathTools: This package collection of independent packages designed to fit common 
engineering or scientific computing needs. To plug-in this package the main function 
is deal with original coordinate transform to PCA coordinate. 

●  Jigloo GUI Builder: This is a plug-in for the Eclipse Java IDE which to build and 
manage both Swing and SWT GUI classes. It implements a set of components 
for building graphical user interfaces and adding rich graphics functionality and 
interactivity to Java applications.

●  I/O: Provides for system input and output through data streams, serialization and the 
file system. In the system, the main function is input, read, write cover map, stego 
map, recover map, and DBF file.

●  Lang and util Packages: Provides classes that are fundamental to the design of the 
Java programming language such as String, Math.

●  JVM and Platforms: Programmer wrote a source code must compile to machine 
code for execute in general program language. But the different situation in Java, 
the source code compiles result is byte code that machine and operation system 
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is unknown. Therefore, JVM main decode byte code to machine code for execute 
program. Besides that, JVM also need to deal with across platform problem for 
achieving write one run any where.

5.2 Accuracy Evaluation Factors

We performed experiments to evaluate the capacity, imperceptibility, reversibility of the 
algorithm. We describe more about several important factors for vector maps in the following 
before we present our experimental results.

Recall that vector maps are one of fundamental data representations for geographic 
information system (GIS), which depends upon the abstraction and classification of real-world 
phenomena. Five factors are commonly used in GIS to evaluate the accuracy of 2D vector maps, 
which include maps scale, map accuracy standard ( ), root mean square error (RMSE), average 
displacement ( ), and the diagonal length of bounding box (DLB). We describe each factor in 
more detail. 

1.  Map scale: The ability to show how detail in a map is determined by the scale. A map 
with a scale of 1:1000 can illustrate much finer points of data than a smaller scale map of 
1:250000. The mathematical expression for the map scale is the ratio of the map distance 
in a map over and the ground distance on the surface, shown in Equation (7).

                                  Map scale = map distance/ground distance                                       (7)

2.  Map accuracy standard ( ): The map accuracy standard is a function of the scale at 
which a map was created. The Specification and Committee of the American Society 
for Photogrammetry and Remote Sensing (ASPRS) have developed the Planimetric 
Coordinate Accuracy Requirement of the term "well-defined point" which pertains to 
features that can be sharply identified as discrete points (Chao et al. 2009). Points which 
are not well-defined (that is poorly-defined) are excluded from the map accuracy test. 
ASPRS defines the limiting root mean square error (RMS error) is 0.025% of a typical 
ground distance in map scale. As an example, for a typical map scale of 1:20000, the 
ground distance is 20000 meters, thus the limiting RMS error is 5 meters. Equation (8) is 
a mathematical expression of the map accuracy standard in meter. 

                Map accuracy standard (  ) = ground distance in map scale x 0.025%               (8)

3.  Root mean square error (RMS error): The RMS error is defined to be the square root of 
the average of the squared discrepancies. Since the connectivity of the cover and stego 
maps as well as cover and recovery maps are identical, the RMS error of each 2D vector 
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map is calculated to measure the distortion. We use RMSEE to indicate the embedding 
distortion, which represents the average distortion per vertex between cover and stego 
vector maps. Similarly, we denote RMSER to indicate the recovering distortion, which 
represents the average distortion per vertex between the recovered map and the original 
map when applying our reversible algorithm. 

4.  Average displacement ( σ ): The average displacement represents the displacement occurs 
in real world. This is used as a quantitative measure for representing the average error in 
real world caused by the distortion after embedding secret message to the vector maps. 
We denote E as the average displacement per vertex between cover and stego vector 
maps caused by data embedding. Similarly, R represents the average displacement per 
vertex between the recovered map and the original map used in our reversible algorithm. 
The equation of this factor is calculated by Equation (9).

                               Average displacement (σ) = RMS error x map scale                            (9)

5.   The Diagonal Length of the Bounding Box (DLB). The DLB represents the diagonal 
length of the bounding box defined in the transformation phase. The bounding box was 
constructed with the extremes in the X-axis and Y-axis. The DLB shows the magnitude 
of vector maps with respect to the center of gravity (G). 

5.3 Evaluation of Experimental Results

We now present our experimental results. In our experimental test, we employ three vector 
maps and employ the above factors to validate the feasibility of proposed methods for metadata 
embedding in vector maps. Table 5 lists characteristics of three vector maps together with 
important features. Observing Table 1 indicates that three vector maps have different amounts 
of vertices, ranging from 2,685 to 9,199 vertices. The Taitung map has the largest Map Scale, 
which also has the largest Map Accuracy Standard (125 meters) and nearly 155 km of DLB. The 
Taitung Village map, however, has the smallest Map Scale, containing smallest Map Accuracy 
Standard (25 meters) and approximately 155 km of DLB. Finally, Pmax represents numbers of 
digitals that are allowed in the mantissa of the decimal value. 

Table 5: Features of three vector maps employed for experiments

Name of Vector Maps Vertex Amounts Map Scale   (m) DLB  (m) Pmax

Taitung Village 9,199 1:100000 25 155,127 6

Taitung County 4,905 1:250000 62.5 155,127 6

Taitung 2,685 1:500000 125 155,127 6
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Figure 10 shows three vector maps with a proportional scale, measured in meters, which is 
displayed at the bottom of the image. We present the ground distance for each map in kilometers, 
which is derived from the first short black line of the proportional scale displayed at the bottom 
left. As an example, the first short black line in Taitung Village represents approximately 37.5 
kilometers of the ground distance.

The Taitung map has the largest Map Scale, which also has the largest Map Accuracy 
Standard (125 meters) and nearly 155 km of DLB. The Taitung Village map, however, 
has the smallest Map Scale, containing smallest Map Accuracy Standard (25 meters) 
and approximately 155 km of DLB. Finally, Pmax represents numbers of digitals that 
are allowed in the mantissa of the decimal value.  

Table 5 Features of three vector maps employed for experiments 

Name of Vector Maps Vertex 
Amounts Map Scale τ  (m) DLB  (m) Pmax 

Taitung Village 9,199 1:100000 25 155,127 6 
Taitung County 4,905 1:250000 62.5 155,127 6 

Taitung 2,685 1:500000 125 155,127 6 

Figure 10 shows three vector maps with a proportional scale, measured in 
meters, which is displayed at the bottom of the image. We present the ground distance 
for each map in kilometers, which is derived from the first short black line of the 
proportional scale displayed at the bottom left. As an example, the first short black 
line in Taitung Village represents approximately 37.5 kilometers of the ground 
distance. 

 

Taitung Village (37.5 km) 

Map Scale : 1 :100000 

Vertex Amounts : 9,199 

τ  (m): 25 m 

 

Taitung County (37.5 km) 

Map Scale : 1 :250000 

Vertex Amounts : 4,905 

τ  (m): 62.5 m 
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Taitung (37.5 km) 

Map Scale : 1 :500000 

Vertex Amounts : 2,685 

τ  (m): 125 m 

Figure 10 Features of three vector maps employed for experimental test 

We present our experimental results by performing the maximum embedding 
capacity of metadata. There are 2(n-2) bits to be embedded in each vector maps where 
n is the amount of vertex number of vector maps. The results are evaluated based on 
the capacity, reversibility and imperceptibility as follows.  

1. Capacity Results 

Table 6 presents the embedding capacity of our algorithm. Recall that our 
methods can embed (n-2) bits of metadata in the odd-list and another (n-2) bits in the 
even-list of a cover vector map, where n represents the amount of vertices in the 
vector map. This leads to the theoretical data capacity of our algorithm is 2(n-2) bits. 
The data capacity shown in Table 6 comply the theoretical data capacity. The 
embedding capacity of our algorithm is nearly 2 bits per vertex (bpv). According to 
the embedding capacity shown in byte, only Taitung village is capable to embed both 
mandatory and conditional metadata elements. Taitung county map and Taitung map 
can only be embedded mandatory metadata elements.  

The results show in Table 6 proves that our method has small embedding 
distortion. The RMSEE is in the range of 0.000057 and 0.000087. The small range of 
the RMSEE implies that while embedding a large amount of metadata, our algorithm 
produces insignificant distortion in the stego vector map. Also shown in Table 6 are 
values of the average displacement of the embedding ( Eσ ) in the stego maps. All Eσ  
values are smaller than the map accuracy standardτ . These values show a significant 
benefit of our methods, which is the positional error caused from the distortion in the 
stego map is still within the map accuracy standard and the stego map can still be 
employed in the GIS applications. Finally, observing Eσ and τ allows us to increase 
the capacity to a vector map which has larger difference between Eσ  and τ ,  
because it can still tolerate more distortion due to the embedded metadata.  

Table 6 Experimental results for metadata embedding and recovery of vector maps  

Embedding Recovery Name of 
the Map 

Vertex 

Amounts

Capacity 

(bits) 

Capacity

(bytes) 
τ  (m)

RMSEE Eσ (m) RMSER Rσ  (m) 

Taitung 
Village 9,199 18,394 2299 25.0 0.000087 8.68 3.41E-11 3.41E-06
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Figure 10: Features of three vector maps employed for experimental test

We present our experimental results by performing the maximum embedding capacity of 
metadata. There are 2(n-2) bits to be embedded in each vector maps where n is the amount of 
vertex number of vector maps. The results are evaluated based on the capacity, reversibility and 
imperceptibility as follows. 

1. Capacity Results

Table 6 presents the embedding capacity of our algorithm. Recall that our methods can 
embed (n-2) bits of metadata in the odd-list and another (n-2) bits in the even-list of a cover 
vector map, where n represents the amount of vertices in the vector map. This leads to the 
theoretical data capacity of our algorithm is 2(n-2) bits. The data capacity shown in Table 6 
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comply the theoretical data capacity. The embedding capacity of our algorithm is nearly 2 bits 
per vertex (bpv). According to the embedding capacity shown in byte, only Taitung village is 
capable to embed both mandatory and conditional metadata elements. Taitung county map and 
Taitung map can only be embedded mandatory metadata elements. 

The results show in Table 6 proves that our method has small embedding distortion. The 
RMSEE is in the range of 0.000057 and 0.000087. The small range of the RMSEE implies that 
while embedding a large amount of metadata, our algorithm produces insignificant distortion 
in the stego vector map. Also shown in Table 6 are values of the average displacement of the 
embedding ( E) in the stego maps. All E values are smaller than the map accuracy standard. 
These values show a significant benefit of our methods, which is the positional error caused 
from the distortion in the stego map is still within the map accuracy standard and the stego map 
can still be employed in the GIS applications. Finally, observing E and  allows us to increase 
the capacity to a vector map which has larger difference between E and ,  because it can still 
tolerate more distortion due to the embedded metadata. 

Table 6: Experimental results for metadata embedding and recovery of vector maps 

Name of the Map Vertex
Amounts

Capacity
(bits)

Capacity
(bytes)

 (m)
Embedding Recovery

RMSEE E (m) RMSER R (m)

Taitung Village 9,199 18,394 2299 25.0 0.000087 8.68 3.41E-11 3.41E-06

Taitung County 4,905 9,806 1225 62.5 0.000064 15.97 1.38E-11 3.45E-06

Taitung 2,685 5,366 670 125.0 0.000057 28.38 7.04E-12 3.52E-06

2. Reversibility Results

Our algorithm has the reversibility manner, which means we can produce a recovered 
vector map once the metadata is extracted. We compare the recovered vector map and the 
original cover map to check the success of the reversibility that our methods can provided. The 
final column in Table 6 shows the comparison in terms of the root mean square error for the 
recovery process (RMSER) and the corresponding average displacement of the recovery (). All 
values of RMSER are small, being less than 3.41E-11, and values of  are smaller than 3.52E-
06 meter. These statistics demonstrate that the success of our reversible mechanism. While the 
recovered vector maps have small root mean square error values, the positional errors occurred 
in all recovery maps are insignificant and within the map accuracy standard. Surely, the 
accuracy of recovery maps satisfies the requirements of GIS applications development.

3. Imperceptibility Analysis

Figure 11 illustrates a visualization of the cover vector maps (left) and the stego vector 
maps (right) for the most complex test vector map-Taitung Village. Within the vector maps, it 
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has very small embedding distortion (small RMSEE and  values). Clearly, observing the images 
it is hard to identify any difference between cover map and stego map. As a result, our method 
can be used to embed a large amount of metadata, yet produces insignificant distortion that 
imperceptible to human visual system.

Taitung 
County 4,905 9,806 1225 62.5 0.000064 15.97 1.38E-11 3.45E-06

Taitung 2,685 5,366 670 125.0 0.000057 28.38 7.04E-12 3.52E-06

2. Reversibility Results 

Our algorithm has the reversibility manner, which means we can produce a 
recovered vector map once the metadata is extracted. We compare the recovered 
vector map and the original cover map to check the success of the reversibility that 
our methods can provided. The final column in Table 6 shows the comparison in 
terms of the root mean square error for the recovery process (RMSER) and the 
corresponding average displacement of the recovery ( Rσ ). All values of RMSER are 
small, being less than 3.41E-11, and values of Rσ  are smaller than 3.52E-06 meter. 
These statistics demonstrate that the success of our reversible mechanism. While the 
recovered vector maps have small root mean square error values, the positional errors 
occurred in all recovery maps are insignificant and within the map accuracy standard. 
Surely, the accuracy of recovery maps satisfies the requirements of GIS applications 
development. 

3. Imperceptibility Analysis 

Figure 11 illustrates a visualization of the cover vector maps (left) and the stego 
vector maps (right) for the most complex test vector map - Taitung Village. Within the 
vector maps, it has very small embedding distortion (small RMSEE and Eσ  values). 
Clearly, observing the images it is hard to identify any difference between cover map 
and stego map. As a result, our method can be used to embed a large amount of 
metadata, yet produces insignificant distortion that imperceptible to human visual 
system. 

 
Figure 11 A visualization of the cover vector map (left) and the stego vector maps (right).
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Figure 11: A visualization of the cover vector map (left) and 
the stego vector maps (right).

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a metadata internal storage method by using reversible 
steganographic algorithm to embed metadata in vector maps. Experimental results shows 
that the maximum metadata embedding capacity of our method is 2(n-2) bits, where n is the 
amount of vertices in a cover vector map. To the best of our knowledge, this is the highest 
capaicty achieved in the literature of reversible steganograhy method for vector maps. The 
results aslo show that our method produces a stego vector map with negligible distortion, 
being only 0.000057 of the root mean square error. In addition, our method has the capability 
of reversibility. This means that once the metadata is extracted, we can produce a recovery 
map with high accuracy that can be used in GIS applications.We only need three secet keys for 
data extracton, including the gravity of the cover map, the major and minor axes generated by 
applying the principal component analysis on the cover vector map. Experimental results also 
show that there is an insignificantly difference between the original and the recovered map, 
which is less than 3.41E-11 of the root mean square error and is imperceptible to the human 
visual system. Meanwhile, our method is robust against the affine transformation including 
translation, rotation uniform scaling, and their combinations. Our method is also secure because 
embedded metadata can not be extracted correctly without the legal secret keys provided.
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In considering to the capacity required by embedding the mandatory and conditional 
metadata elements of ISO 19115 metadata standard that we have adapted in this paper, a vector 
map should has at least 5458 vertices so that all mandatory and conditional metadata elements 
can be embedded in the vector map. Since the conditional elements should not be embedded 
alone, a vector map should has at least 1998 vertices so that the mandatory metadata elements 
can be embedded and integrated with the vector map. Any vector map with vertex points less 
than 1998 is suggested to embed some metadata elements only, such as dataset title, metadata 
point of contact and the information link of metadata. Furthermore, our method can aslo be used 
to embed data with less capacity, such as copyright declaration, watermarking information, and 
user authentication information.

There are some possible future works deserved to be investigated. The first is to extend 
the method proposed in this paper to increase the embedding capacity. So that the limitation 
caused by the amount of vertex of vector maps can be improved. The second is to investigate 
the effects of vector maps' features to our method, such as the complexity of cover vector maps, 
the smoothness of boundary, and the included angle between vertices. So that better results in 
embedding capacity and recovery accuracy can be achieved. Finally, a distortion free method 
for internal metatdata storage mechanism should be considered as the utimate goal of all future 
works.
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