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Abstract
As databases become increasingly complicated, building data warehouse with object 

concepts becomes the essential trend in the future. Designing such a data warehouse usually 
requires much human involvement. This work proposes a conceptual model for designing an 
object-relational data warehouse, and provides a semi-automated methodology for deriving 
the model from the standard documentation of the object-relational database. The construction 
of the model using the semi-automated methodology is demonstrated in simple examples. 
Furthermore, this work contributes a mapping mechanism from the conceptual schema to the 
logical design, and displays the mapping result in both a logical diagram and physical code. The 
physical code generated based on the logical diagram is refined by using the domain properties 
in object-relational database to improve the storage cost as well as query performance.

Keywords: Object-relational data warehouse, Conceptual models, Multidimensional data 
model, Enhanced entity-relational model.
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摘要

隨著資料庫的日漸複雜，以物件為概念的資料倉儲將成為未來的建構趨勢。而物件

資料倉儲的設計通常耗費大量人力。本文針對物件關連式資料倉儲的設計提出其概念模

型，並提供半自動化的方式由物件關連式資料庫的標準文件推導出此概念模型。簡單的

實例將說明此半自動化的建構方式。本研究的貢獻還包括建立概念綱要到邏輯設計的映

對機制，映對結果可直接以邏輯圖及程式碼呈現，此外，亦提出如何根據物件關連式資

料庫的定義域特質來精煉此程式碼，以改善儲存成本與存取效能。

關鍵字：物件關連式資料倉儲、概念模型、多維度資料模型、增強式實體關
聯模型。
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1. INTRODUCTION

Data warehousing is a popular approach for storing large volumes of historical data 
(Kimball 2002; Inmon 1996; Gyssens and Lakshmanan 1996; Li and Wang 1996). It has been 
widely adopted to support many applications such as data mining tools, decision support 
systems, and executive information systems (Poe et al. 1997; Akoka et al. 2001; Gray and 
Waston 1998). As a data warehouse (DW) extracts its data from multiple data sources, designing 
a DW needs to map the schemas of these data sources to the DW ś schema to support the 
decision making in enterprises. However, the schemas of these data sources are normally 
complicated. Designing a DW, therefore, requires much involvement of experienced designers. 

Many data models have been proposed to facilitate constructing DW during different 
design phases (conceptual design, logical design and schema creation). Among them, the 
dimensional fact (DF) model proposed by Galifarelli et al. (1998) is one of the primary design 
for conceptual phase. Constructing a DW using the DF model has several advantages. First, 
the DF schema of a DW can be automatically constructed from the Entity Relationship (ER) 
schemas of the data sources through the mapping processes in literature (Golfarelli et al. 1998), 
and this greatly expedites DW ś conceptual design. Since ER schema has been regarded as a 
standard documentation for the systems based on the relational data model, this technique is 
useful in practice. Second, the data hierarchies are well presented in the DF schema so that a 
typical DW query can be diagrammatically presented in the DF schema to assist query writing. 
The data hierarchies also help integrating multiple DF schemas by testing their overlapping 
and inclusion. This is particularly helpful when the DW ś data sources are multiple databases 
or data marts. Third, the DF model clearly distinguishes measures and dimensions, and 
consequently improves the efficiency of DF ś logical design. Fourth, the DF schema can be 
semi-automatically transformed into DW ś logical design by using a mapping mechanism 
(Golfarelli et al. 1999). Overall, these properties of DF model enable cost-saving and less error-
prone in the construction of DW.

The DF model, however, addresses only simple data types like number and string, and 
cannot handle the complex semantics of object. Most of modern information systems are object-
relational, which must handle objects and their relationships to represent complex data such as 
images, graphics, spatial data and multimedia. While constructing a DW from such data sources, 
designers no longer benefit from the advantages of the DF model described above. Thus, it is 
practical to extend the DF model to conceptually represent the data warehouse which involves 
the concept of objects and their relationships. Such a data warehouse is called an object-
relational data warehouse (ORDW) in literature (Gopalkrishnan et al. 1999). 

In this work, we first proposes the Extended DF (EDF) as the conceptual model of ORDW, 



資訊管理學報　第十五卷　第四期208

which not only employs all the modeling concepts of the DF model but also includes the 
characteristics of objects, namely super-class/subclass and inheritance. In order to construct an 
ORDW from object-relational data source in which we save more manpower, we then provide a 
mapping algorithm to transform the Enhanced ER (EER) schemas of the object-relational data 
sources into the EDF schema of the ORDW. EER schema is the standard conceptual design used 
for object-relational databases. Next, the EDF schema of the ORDW will be mapped into the 
logical design of the ORDW as well as the schema in the form of DDL. The resulted schema 
will be further refined to reduce the cost on storage. 

After surveying the literature on data models at different design level in Section 2, in 
Section 3 we explain the EDF model, and utilize the graphical expression to denote ORDW 
queries. In Section 4, we propose a methodology for deriving EDF schema from the EER 
schema, and depict the conversion between them. In Section 5, we develop a mapping algorithm 
from an EDF schema to the logical design of ORDW, and also provide an approach to refine 
the mapping result. This approach is applied to a real project from Golfarelli et al. (1998) to 
illustrate its efficiency on saving storage. Finally, we draw a conclusion in Section 6.

2. RELATED WORK

The design of a DW can be divided into three levels, including the conceptual design, 
logical design and physical design (Goncalves 2006). Many data models (Sapia et al. 1998; 
Tryfona et al. 1999; Bækgaard 1999; Agrawal et al.1997; Cabibbo and Torlone 1998; Hacid 
and Sattler 1997; Kimball 1998; Franconi and Kamble 2003) have been developed for each of 
them. Some of the proposals also further discuss the query operator or algebra for OLAP as in 
literature (Vassiliadis 1998; Franconi and Sattler 1999; Pedersen et al. 2001; Thomas and Datta 
2001). Some focus on the conceptual level, which provides concept close to the way many users 
perceive data and hides the details of how data is stored or implemented. Tryfona et al. (1999) 
combined the properties of ER model and star schema to be a mixed model to describe the DW 
conceptually. The attributes of facts in the model were categorized into three types, including 
additive (being able to be summarized), non-additive and having been summarized. This model 
also includes the concept of objects to express the complex relation between entities. Another 
ER-like model is proposed by Sapia et al. It is extended to capture multidimensional semantics 
by adding the entity sets and relationship sets. The relationships in the model are treated as 
facts (Sapia et al.1998). Bækgaard (1999) used events and entities respectively to present the 
measured data and dimensions. The star schema in the model consists of several star paths, each 
of which collects all entities related to a single event ad can be presented in literal. These events 
are specified with time domains, which could be a time point, a time interval or a set of time 
points. 
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Most models that incorporate OO semantics with data warehouse modeling are based on 
UML. On the basis of aggregation and generalization hierarchies, Akoka et al. (2001) derived 
multidimensional model from the UML model for different design phases. Nguyen et al. (2000) 
modeled conceptual multidimensional semantics in term of classes using UML. Abelló et al. 
(2001) defined different kinds of nodes and arcs to depict the structure of the DW in addition 
to those used in UML. The data are classified and grouped with respect to different levels of 
aggregation. The schema in the model can also be described in some different detail levels. 
Rahayu et al. (2001) extended the star schema to deal with the object feature in the hierarchical 
dimension of a DW. Gopalikrishnan et al. (1999)  designed the object-relational view for DW, 
which also signifies an OO view to the underlying RDB. Hacid and Sattler (1997) have proposed 
a formal framework extending description logic for hierarchically structured dimensions. 
Two kinds of modeling methods (Trujillo et al. 2000; Trujillo et al. 2001; Lujan-Mora et al. 
2002; Abello et al. 2001) have been developed to transform a data cube into OO models with 
class hierarchies. Although the works described above have applied object concepts to handle 
complex data in data warehouses, a model to deal with the object-relational data warehouses is 
still lacked.

Some other studies on DW provide a translation mechanism between various models 
(Fong 1995; Krippendorf and Song 1997; Moody et al. 2000; Akoka et al. 2001). Joseph 
(1995) furnished the techniques to transform the EER model into the object-oriented model. 
Krippendorf and Song (1997) presented the process for mapping a star schema into an ER 
diagram. Reversely, Moody (2000) developed techniques for obtaining a DW schema from 
an ER schema. With the application of fuzzy technology, Feng and Dillon (2003) supplied a 
three-layered DW model for capturing and illustrating numerical, categorical and quantifier 
summaries.  Franconi and Kamble (2003) provided a general formalism to encompass several 
proposals for the data models on the data warehouse, in order to compare formally different 
data models. Various logical models on DW for OLAP were also discussed and compared in 
literature (Vassiliadis et al. 1999; Tsois et al. 2001; Abello et al. 2001). These works assist 
constructing DW in parts of levels. And, a complete three-level procedure of constructing an 
ORDW is expected.

3. THE ENHANCED DIMENSIONAL               
 FACT (EDF) MODEL

This section describes the basic data-structuring concepts and relational constraints 
of the EDF model, and demonstrates their use in the design of conceptual schemas for DW 
applications. The development of this model is based on the ED model of Golgarelli et al to 
deal with the concepts of objects, including inheritances and compositions. The diagrammatic 
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notation associated with the EDF model, known as EDF, is also presented. 
The EDF schema comprises a set of fact schemas. The basic components of a fact schema 

are facts, dimensions, hierarchies and inheritances. A fact represents data of interest for analysis, 
and a dimension presents the transaction attribute chosen to represent a fact. A hierarchy 
expresses the attributes having the same property but different granularity to aggregate the fact. 
The inheritance represents the inheritance relationship between dimensions. 

3.1 EDF Schema Structure

The structure of EDF schema l is defined formally in the graph model below. The query on 
an EDF can also be represented in a diagram. 

Definition 1. A fact schema is an acyclic-directed graph G=(V, E), where the set of vertices 
V is a triple V=(f, D, N), where f represents a fact; D denotes the set of all dimension attributes, 
and N denotes the set of all non-dimension attributes. If G is regarded as a quasi-tree, then the 
vertex f is its root. The vertex d∈D is a dimension if and only if there exists (f, d)∈E. The sub-
trees rooted by dimensions are known as hierarchies. Let p(y) denote the parent of vertex y. The 
in-directed edge (x, y)∈E represents the “many-to-one＂ relationship of x and y as x, y∈D and 
x=p(y), or “one-to-one＂ relationship as x∈D, y∈N. The directed edge <x, y>∈E represents the 
inheritance relationship between x and y. 

A fact represents a many-to-many relationship among the dimensions, and each 
combination of values of some dimension attributes defines a fact instance on one of the fact 
attributes, which is similar to the data cube in DW. A fact f is described by its name and the 
collection of fact attributes (measures). A fact schema may have no fact attribute, since each fact 
instance expresses the occurrence of an event, and which coincides logically with the factless 
fact table described in literature (Kimball 2002). A hierarchy comprises the dimension attributes 
linked by many-to-one relationships, and the domain of each dimension attribute is assumed to 
be a set of discrete values. A hierarchy may also include non-dimension attributes. A dimension 
d defines the finest aggregation granularity among the dimension attributes of the hierarchy 
rooted by d. 

The vertices in a fact schema diagram are four categories, and are described below. 
⦁     A fact is represented in an EDF diagram as a rectangular box enclosing the fact name on 

the top, and the collection of measure names. 
⦁     A dimension attribute d∈D is represented by a circle. 
⦁     A non-dimension attribute v∈N is denoted by a dot, and therefore is not displayed 

explicitly. 
⦁     A supper-class dimension attribute is represented by a small square with a circle inside, 

and is linked to its subclass dimension attribute by an edge directed from the super-class to 
subclass. 
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Fig.1 displays a small fact schema for Transcript, describing the case of the courses being 
taken in a school. The name of the fact is Transcript, and the fact attributes are grade and 
number of students. The fact schema has three dimensions, semester, courses and students. 
The dimension attribute person is the super-class of dimension student, and the directed edge 
represents their inheritance relationship. The non-dimension attributes express the additional 
information for dimension attributes, and cannot be adopted to perform the aggregation. 
For instance, office describes the office locations of the departments, and cannot be used to 
aggregate the numbers of students. An example of a fact instance is the collection of the grades 
of a student for courses.

3.2 Operations of EDF Model 

In DW, OLAP operations such as slicing and dicing are performed to shrink the data cube 
by lowering the range of values in each dimension. Every data cube represents an aggregation 
result of the transaction data. In the EDF model, a fact instance corresponds to a data cube. The 

traversal of a hierarchy (except the non-dimension attributes) represents the roll-up or drill-
down operations in OLAP. The operation of EDF model describes the presentation of querying 
an ORDW. Every query employs operators to aggregate fact instances into clusters for the fact 
attributes. The aggregation operators include sum, count, max, min, avg and some others in 
statistic arithmetic. 

EDF model enables users to express intuitively queries by query diagram as the way in 
DF model since it is an enhancement of DF model. According to the definitions in literature 
(Golfarelli et al. 1998), a fact attribute is called additive if the sum operator can be applied 

of a hierarchy (except the non-dimension attributes) represents the roll-up

or drill-down operations in OLAP. The operation of EDF model describes 
the presentation of querying an ORDW. Every query employs operators to 
aggregate fact instances into clusters for the fact attributes. The 
aggregation operators include sum, count, max, min, avg and some others 
in statistic arithmetic.  

EDF model enables users to express intuitively queries by query 
diagram as the way in DF model since it is an enhancement of DF model. 
According to the definitions in literature (Golfarelli et al. 1998), a fact 
attribute is called additive if the sum operator can be applied to aggregate 
a fact instance along the hierarchy on the fact attribute; non-additive if it is 
not additive along any dimensions, and semi-additive if it is additive along 
some dimensions but not others. An example of an additive attribute is 
quantity sold in the fact schema SALE in literature (Golfarelli et al. 1998). 
The student qty in Fig. 1 is semi-additive attribute, because it is 
non-additive along dimension student, but is additive along the course and 
semester dimensions. The grade attribute is non-additive, because adding 
up two grades does not make sense. However, aggregation is meaningful 
on semi-additive or non-additive attributes using operators besides sum,
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to aggregate a fact instance along the hierarchy on the fact attribute; non-additive if it is not 
additive along any dimensions, and semi-additive if it is additive along some dimensions but not 
others. An example of an additive attribute is quantity sold in the fact schema SALE in literature 
(Golfarelli et al. 1998). The student qty in Fig. 1 is semi-additive attribute, because it is non-
additive along dimension student, but is additive along the course and semester dimensions. The 
grade attribute is non-additive, because adding up two grades does not make sense. However, 
aggregation is meaningful on semi-additive or non-additive attributes using operators besides 
sum, such as avg, max and min. For instance, grade might be averaged along the semester, 
course or student dimensions. 

A query model on a fact schema is a diagram in which fact instances are aggregated by 
the marked dimension attributes. The mark may include a parameter indicating the filter (the 
Where clause in SQL) or simply aggregation (group by in SQL). Each hierarchy has at most one 
marked dimension attribute. A dimension may have no marked dimension attributes, indicating 
that none of its attributes are involved in the query. The query of the number of male students 
for each course per year can be represented by the query diagram in Fig. 2, where the dimension 
attribute sex is marked with the parameter male. Non-dimension attributes need not be shown 
on the query diagram. 

Fig 2：Query Model on a Fact Schema
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 EER SCHEMA

The section provides the methodology to build an EDF model starting from the 
documentation describing the operational object-relational databases. Similar to other 
conceptual models, it is time-consuming to construct an EDF schema as the schema must map 
the data sources that are complicated. Because of the fact that the EER schema is a popular 

such as avg, max and min. For instance, grade might be averaged along 
the semester, course or student dimensions.  

A query model on a fact schema is a diagram in which fact instances 
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conceptual design in object-relational database, obtaining the EDF schema from the existing 
EER schema in an automatic way reduces the human involvement on the conceptual design of 
ORDW, and consequently is time-saving and less error-prone. The transformation from EER to 
EDF comprises the following steps: 

1. Degrading EER and defining facts. 
2. Constructing the attribute tree. 
3. Pruning and grafting the attribute tree. 
4. Transforming the attribute tree to the EDF schema.
These steps are illustrated with reference to the University example, a simplified EER 

schema depicted in Fig. 3, in which dots denote the identified attributes. The notation of EER 
model is described by Batini et al. (1992). Every instance of relationship transcript represents a 
learning 

Fig 3：A simplified EER schema

status referring to a single student for a course. A student may take a course more than 
once, especially when he has failed the course. 

4.1 Degrading EER and Defining Facts

Since a fact represents the transaction data increased or updated timely and interest for 
analysis, it should correspond to either an entity type or a relationship type in an EER schema. 
Therefore, entity types and relationship types are the candidates for defining facts. Some 
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involvement on the conceptual design of ORDW, and consequently is 
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3.Pruning and grafting the attribute tree.  
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tools for conceptual design only allow to-one relationships, and replace all many-to-many the 
relationships with association entities and to-one relationships (Elmasri and Navathe 2004). 
Every entity type in such an EER, may be in one of four categories, association, subclass, super-
class and general. However, neither entity types in the latter two categories nor relationship 
types are considered when defining facts. 

Accordingly, to simplify the transformation of an EER to an EDF schema, the given 
EER is first converted into the form with only“to-one＂relationships, based on the processes 
of association entity type (Codd 1979). Each relationship of two categories is transformed 
into association entities, n-ary relationships and binary many-to-many relationship. Each 
n-ary relationship is converted into four to-one binary relationships, and each many-to-many 
relationship is converted into two. Every converted association entity type still contains each of 
the attributes that exist on the original relationship type. The identifier of the converted entity 
type representing the participating entity types by composing their identifiers. The relationship 
transcript in the example in Fig. 3, is many-to-many, and its converted entity type with identifier 
(Student, Course) is depicted in Fig. 4. 

A fact schema based on an EER can be constructed from more than one fact. Every selected 
fact becomes the root of an individual fact schema. In Fig. 3, the subclass entities, staff and 
student, and general entities course and department are almost static, and only the relationship 
transcript represents frequently updated data, thus transcript is defined as the fact after being 
converted into an association entity type, namely the root of the fact schema. The entity type 
and relationship type are respectively called “entity＂ and “relationship＂ hereafter for short. 

 Fig 4：Degrading transcript into an association entity 

4.2 Building the Attribute Tree

After selecting facts, the attribute trees are constructed to define their dimensions. An 
attribute tree T has the following characteristics. 
⦁     Each vertex of T corresponds to an attribute or an identifier of an entity in S. 
⦁     The root of T corresponds to the identifier of the entity selected as fact F. 
⦁     For a vertex v corresponding to the identifier of an entity e1, every child c of v must 

the fact schema. The entity type and relationship type are respectively 
called “entity” and “relationship” hereafter for short.  

4.2 Building the Attribute Tree

After selecting facts, the attribute trees are constructed to define their 
dimensions. An attribute tree T has the following characteristics.  

Each vertex of T corresponds to an attribute or an identifier of an 
entity in S.
The root of T corresponds to the identifier of the entity selected as fact
F.
For a vertex v corresponding to the identifier of an entity e1, every 
child c of v must correspond to either the attributes of e1, or the 
identifier of the entity which is linked to entity e1 by a “to-one” 
relationship in S. The child c in the former case must be a leaf.  

The attribute tree for fact F may be constructed automatically by 
calling the recursive procedure Builder, shown in Table 1, with input 
parameters fact F and the vertex vF corresponding to the identifier of F.
Namely, The output of procedure Builder is the attribute tree rooted by 
vertex vF. Namely, the attribute tree can be built by invoking

                            Builde(F, vF);

In procedure Builder, we let vE denote the vertex corresponding to the 
identifier of entity E, and va the vertex corresponding to an attribute a.

Fig. 4.  Degrading transcript into an association entity
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correspond to either the attributes of e1, or the identifier of the entity which is linked to 
entity e1 by a“to-one＂relationship in S. The child c in the former case must be a leaf. 
The attribute tree for fact F may be constructed automatically by calling the recursive 

procedure Builder, shown in Table 1, with input parameters fact F and the vertex vF 

corresponding to the identifier of F. Namely, The output of procedure Builder is the attribute 
tree rooted by vertex vF. Namely, the attribute tree can be built by invoking

Builde(F, vF);
In procedure Builder, we let vE denote the vertex corresponding to the identifier of entity E, 

and va the vertex corresponding to an attribute a. 

Table 1: Algorithm of using EER model to building the attribute tree 

     

Procedure builder comprises three steps, as shown in Table 1. In the first step, the first 
for loop in lines 2–6, each of the attributes (other than the identifier of the current entity) is 
added to the attribute tree as a vertex and is linked to the input (current) vertex. If the attribute 
is composite, then every constituent of the attribute is added as a child vertex of the vertex 
corresponding to the attribute. The second step, in lines 7–11, is that the vertices corresponding 
for the entities, either super-class or sub-class of entity E, are built and connected by directed 
edges to present the inheritance relationships. In lines 12–17, this procedure finally deals with 
every entity Ei linked to the current entity E by the“to-one＂relationship R, and all attributes of 
the“to-one＂relationship R. The ends of part two and part three (line 11 and line 17) will call 
procedure builder recursively to further process every entity. 

Briefly, procedure builder forms a vertex for each processed attribute and connects the 
vertex onto the attribute tree. Given the EER scheme of the Transcript in Fig. 3 as an example, 
the attribute tree generated by the procedure builder is shown in Fig. 5.

Table 1: Algorithm of using EER model to building the attribute tree          
1 Builder (E

a of E and a is not an identifier,
x va as the child of vertex v.

 the child of vertex va.

 from vEi to vertex vE

 vE,
Ei , and 

, vE) :  
2     For each attribute 
3         create vertex va for attribute a, and attach verte
4         If a is a composite attribute, then

 a,5             for each constituent c of attribute
6               create vertex vc for c, and attach vc as
7     For each entity Ei which is connected to E by a is_a relationship  
8         if Ei is a super-class of E, then

r of Ei , and add directed edge9             create vertex vEi for identifie
10         else  create vertex vEi for identifie of Ei , and add directed edge from vE to vertex vEi

11         call procedure Builder with parameters Ei and vEi .
elationship R,12     For each entity Ei which is connected to E by a x-to-one r

13        create vertex vEi for identifier of Ei , and attach vEi as the child of vertex
14        create vertex vb for each attribute b of R, and attach vb as the child of vertex v
15        if b is a composite attribute then for each constituent c of attribute b,
16             create vertex vc for c, and attach vc as the child of vertex vb . 
17        call procedure Builder with parameters Ei and vEi .

Procedure builder comprises three steps, as shown in Table 1. In the first 
ste

orms a vertex for each processed attribute 
and

p, the first for loop in lines 2–6, each of the attributes (other than the 
identifier of the current entity) is added to the attribute tree as a vertex and 
is linked to the input (current) vertex. If the attribute is composite, then 
every constituent of the attribute is added as a child vertex of the vertex 
corresponding to the attribute. The second step, in lines 7–11, is that the 
vertices corresponding for the entities, either super-class or sub-class of 
entity E, are built and connected by directed edges to present the 
inheritance relationships. In lines 12–17, this procedure finally deals with 
every entity Ei linked to the current entity E by the “to-one” relationship R,
and all attributes of the “to-one” relationship R. The ends of part two and 
part three (line 11 and line 17) will call procedure builder recursively to 
further process every entity. 

Briefly, procedure builder f
 connects the vertex onto the attribute tree. Given the EER scheme of 

the Transcript in Fig. 3 as an example, the attribute tree generated by the 
procedure builder is shown in Fig. 5. 
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Fig 5：Attribute tree, rooted by transcript, for the EER in Fig. 3

4.3 Pruning and Grafting of the Attribute Tree

The“to-one＂relationship could be either one-to-one or many-to-one, and the identifiers 
of entities connected by the both types of to-one relationships are inserted into the attribute 
tree. However, the drill-down or roll-up operation, along with the one-to-one relationship, 
do not change the aggregation result except to change the header name in a DW query. 
Accordingly, vertices that are not useful in aggregation must be eliminated from the attribute 
tree. Additionally, the builder may create identical sub-trees, which might be redundant. 
Therefore, the attribute tree must be modified according to the requirement of the designer. The 
modification can be performed by grafting and pruning processes described below. 
⦁     grafting(u, v): disconnecting all sub-trees rooted by the descendants of vertex u, and 

connecting each sub-tree to vertex v. 
⦁     pruning(s): disconnecting a sub-tree or a vertex s from the parent of s. 

As the sub-tree is considered as redundant, it can be pruned directly by invoking pruning 
function. To eliminate the one-to-one relationship between vertices u and v, where u is the child 
of v, first call function grafting(u, v), and then call pruning(u) to delete vertex u from the tree. 
The descendants of vertex u, which are dimensions different from u, remain in the tree. Vertices 
that are not adopted for aggregation can also be eliminated by grafting and pruning operations. 
Fig.6 shows the attribute tree modified by pruning the sub-tree department of the vertex student. 

Fig 6：The result of grafting the attribute tree in Fig. 5
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4.3 Pruning and Grafting of the Attribute Tree

The “to-one” relationship could be either one-to-one or many-to-one, 
and the identifiers of entities connected by the both types of to-one 
relationships are inserted into the attribute tree. However, the drill-down 
or roll-up operation, along with the one-to-one relationship, do not change 
the aggregation result except to change the header name in a DW query. 
Accordingly, vertices that are not useful in aggregation must be eliminated 
from the attribute tree. Additionally, the builder may create identical 
sub-trees, which might be redundant. Therefore, the attribute tree must be 
modified according to the requirement of the designer. The modification 
can be performed by grafting and pruning processes described below.

grafting(u, v): disconnecting all sub-trees rooted by the descendants of 
vertex u, and connecting each sub-tree to vertex v.
pruning(s): disconnecting a sub-tree or a vertex s from the parent of s.

As the sub-tree is considered as redundant, it can be pruned directly by 
invoking pruning function. To eliminate the one-to-one relationship between 
vertices u and v, where u is the child of v, first call function grafting(u, v),
and then call pruning(u) to delete vertex u from the tree. The descendants of 
vertex u, which are dimensions different from u, remain in the tree. 
Vertices that are not adopted for aggregation can also be eliminated by 
grafting and pruning operations. Fig.6 shows the attribute tree modified by 
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pruning the sub-tree department of the vertex student.

4. 4.  Transforming the Attribute Tree to the EDF Schema

After the attribute tree is modified, the EDF schema can be obtained by 
transforming the tree with four processes: marking non-dimension 
attributes, defining fact attributes, defining dimensions and defining 
hierarchies. These processes require only simple recognition by users or 
designers. First, the leaf vertices corresponding to the attributes that are 
adopted to describe the fact, but not to perform aggregation, are examined. 
Such vertices are marked as non-dimensional attributes using a dot to 
distinguish them from the others vertices, depicted by a circle. All children 
of the root that are not marked are then defined as dimensions or fact 
attributes.

Fact attributes are units of the fact instance to be aggregated in 
different view. Some of these units are typically displayed in the EER 
schema as the attributes of the entity types. Thus, the fact attributes can be 
selected among the leaves that are the children of the root, and added in 
the box representing the fact in EDF schema. Additionally, a fact may 
have no attribute if it only records an event (Kimball 2002). In this case, a 
dummy fact attribute “number” or “amount” needs to be added to the EDF 
schema.  

16
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4.4 Transforming the Attribute Tree to the EDF Schema 

After the attribute tree is modified, the EDF schema can be obtained by transforming the 
tree with four processes: marking non-dimension attributes, defining fact attributes, defining 
dimensions and defining hierarchies. These processes require only simple recognition by 
users or designers. First, the leaf vertices corresponding to the attributes that are adopted to 
describe the fact, but not to perform aggregation, are examined. Such vertices are marked as 
non-dimensional attributes using a dot to distinguish them from the others vertices, depicted 
by a circle. All children of the root that are not marked are then defined as dimensions or fact 
attributes. 

Fact attributes are units of the fact instance to be aggregated in different view. Some of 
these units are typically displayed in the EER schema as the attributes of the entity types. Thus, 
the fact attributes can be selected among the leaves that are the children of the root, and added in 
the box representing the fact in EDF schema. Additionally, a fact may have no attribute if it only 
records an event (Kimball 2002). In this case, a dummy fact attribute“number＂or“amount＂
needs to be added to the EDF schema. 

Each parent–child pair in the tree is a to-one relationship, indicating that the fact instances 
can be aggregated along with the children of the root (fact). Going thorough a path from a 
child of the root to a leaf (which is a dimension attribute) represents analyzing fact instances 
in increasingly coarse units. Restated, the children of the root in the attribute tree could be 
equivalent to the dimensions of the EDF schema, which determine the method of aggregating 
fact instances. Accordingly, the dimensions must be chosen among the children of the root in the 
tree. 

A crucial dimension is time. The EER schema normally describes the static relationship 
among entities for an object-relational database. That is, the database contains only the current 
data. In such cases, the EER may have no attribute related to time on the entity types or 
relationship types that are selected as facts. By contrast, data warehouses are mainly employed 
to store the historical data. Therefore, time should be automatically incorporated into the tree 
as a dimension if it does not appear as a child of the root. The dimensions chosen in Fig. 6 are 
course, time and student. 

All sub-trees rooted by dimensions are defined as hierarchies. Based on the property of 
constructing attribute tree, a to-one relationship must be held between each attribute and its 
child for each hierarchy of an EDF schema. Additionally, the designer can add a new dimension 
attribute onto a hierarchy under the to-one relationship to aggregate the fact instance in a 
different granularity. In Fig. 6, the time is variegated with year, quarter and month. The EDF 
schema shown in Fig. 1 could be one example of transforming the attribute tree of Fig. 5 to an 
EDF schema. 
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5. LOGICAL DESIGN FROM                                  
 EDF SCHEMAS

The EDF schema can express the entities and relationship concept of ORDW, and can 
thus be a reference for designing the table (or class) schemas of ORDW logically. As the 
EDF schema is complex, the logical design with respect to schema would be also difficult. 
This leads to the need for a mechanism that can derive logical design from EDF schema. This 
section describes a mapping algorithm that can be used to translate EDF schema into the logical 
design. The process of translation is demonstrated by the example of the transcript. Finally, 
three checking points are provided to refine the table schema derived from the logical design. 
The refinement makes the table schema more coincident with the properties and application of 
ORDW. 

5.1 Mapping Algorithm of EDF Schema into Logical Design

The collections of vertices classified according to Definition 1, as fact, dimension attribute 
and non-dimension, are denoted by F, D and N, respectively. The algorithm maps every node in 
D or F into a class (table), and every node in N into an attribute of a class. Accordingly, the edge 
of the EDF schema denotes the relationship either between two classes, or between a class and 
an attribute. In object-relational data, the relationship between two classes could be either a class 
composition hierarchy (CCH) (Kimball 2002) or an inheritance (ISA) relationship. Hence, this 
algorithm establishes the classes mapped from adjacent vertices with CCH or ISA relationships. 
Additionally, a mapped attribute is included in the transformed class of which vertex connected 
to the vertex of the converted attribute. The ORDW schema can therefore be constructed 
automatically by performing the mapping algorithm with the following statements:  

Cf = newClass(f);                             
Translate(Cf, f);                              

where the fact f is selected arbitrarily from the EDF schema if more than one fact exists, 
and function Translate is a recursive call with two parameters, the fact f and the class Cf  mapped 
from f, as shown in Table 2. 

Table 2 : Translate function: converting an EDF schema 
     into an ORDW schema in logical design

need for a mechanism that can derive logical design from EDF schema. 
This section describes a mapping algorithm that can be used to translate 
EDF schema into the logical design. The process of translation is 
demonstrated by the example of the transcript. Finally, three checking 
points are provided to refine the table schema derived from the logical 
design. The refinement makes the table schema more coincident with the 
properties and application of ORDW.  

5.1 Mapping Algorithm of EDF Schema into Logical Design 

The collections of vertices classified according to Definition 1, as fact, 
dimension attribute and non-dimension, are denoted by F, D and N,
respectively. The algorithm maps every node in D or F into a class (table), 
and every node in N into an attribute of a class. Accordingly, the edge of 
the EDF schema denotes the relationship either between two classes, or 
between a class and an attribute. In object-relational data, the relationship 
between two classes could be either a class composition hierarchy (CCH) 
(Kimball 2002) or an inheritance (ISA) relationship. Hence, this algorithm 
establishes the classes mapped from adjacent vertices with CCH or ISA 
relationships. Additionally, a mapped attribute is included in the 
transformed class of which vertex connected to the vertex of the converted 
attribute. The ORDW schema can therefore be constructed automatically 
by performing the mapping algorithm with the following statements:   

Cf = newClass(f);                              

Translate(Cf, f);                               

where the fact f is selected arbitrarily from the EDF schema if more 
than one fact exists, and function Translate is a recursive call with two 
parameters, the fact f and the class Cf mapped from f, as shown in Table 2.

Table 2 : Translate function: converting an EDF schema into an ORDW schema in logical design 
Translate(Cv, v) // v is the processing vertex, and Cv is the class mapped from v
{

for each vertex u connect to v do { 
   if u is a leaf node or u is a non-dimension attribute then

add_attribute(Cv, u);
else {

Cu =newClass(u); 
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The translate function recursively traces all nodes of the EDF model, beginning from the 
root through a depth-first search. It also works for an EDF schema containing no object property 
at all. Recall that the time dimension needs to be automatically added into the EDF model with 
the dimension attributes determined by the designer. Therefore, the translate function should 
skip the mapping of the dimension attributes of time. Instead, a class for time dimension must 
establish containing attributes of the nodes on the time hierarchy, or attributes determined by the 
designer. Additionally, each dimension of the fact in EDF schema can be directly defined as a 
method belonging to the class of the fact. Given the input as the example in Fig. 1, the mapping 
algorithm can produce a logical schema shown in Fig. 7, and the output can be displayed 
directly as a physical design shown in Table 3.

Fig 7：Translated ORWD schema of Transcript in logical design

 switch (u) { 
    case ( u is super class of v) : 
       Add_ ISA_relation (Cu, Cv); // establish Cv inheriting Cu

case ( u is sub-class of v) : 
     Add_ISA_relation(Cv, Cu); // establish Cu inheriting Cv

    default ( u is a fact or a non-leaf node) : 
       Add_CCH_relation(Cv, Cu); // establish Cu as attribute of Cv

    } } // end switch and end if  
    Translate(Cu, u);
  } //end for loop 
}

The translate function recursively traces all nodes of the EDF model, 
beginning from the root through a depth-first search. It also works for an 
EDF schema containing no object property at all. Recall that the time 
dimension needs to be automatically added into the EDF model with the 
dimension attributes determined by the designer. Therefore, the translate 
function should skip the mapping of the dimension attributes of time. 
Instead, a class for time dimension must establish containing attributes of 
the nodes on the time hierarchy, or attributes determined by the designer. 
Additionally, each dimension of the fact in EDF schema can be directly 
defined as a method belonging to the class of the fact. Given the input as 
the example in Fig. 1, the mapping algorithm can produce a logical 
schema shown in Fig. 7, and the output can be displayed directly as a 
physical design shown in Table 3. 
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       Add_ ISA_relation (Cu, Cv); // establish Cv inheriting Cu

case ( u is sub-class of v) : 
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beginning from the root through a depth-first search. It also works for an 
EDF schema containing no object property at all. Recall that the time 
dimension needs to be automatically added into the EDF model with the 
dimension attributes determined by the designer. Therefore, the translate 
function should skip the mapping of the dimension attributes of time. 
Instead, a class for time dimension must establish containing attributes of 
the nodes on the time hierarchy, or attributes determined by the designer. 
Additionally, each dimension of the fact in EDF schema can be directly 
defined as a method belonging to the class of the fact. Given the input as 
the example in Fig. 1, the mapping algorithm can produce a logical 
schema shown in Fig. 7, and the output can be displayed directly as a 
physical design shown in Table 3. 
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Table 3: Physical design in Unix-SQL syntax

5.2 The Refinement of the Logical Design

The variety of data types provided in object-relational systems favors the design on 
attribute domains, such as SET and CLASS. This section introduces four techniques to refine 
the translated schema by exploiting the beneficial characteristics of the object-relational model. 
These techniques are building the set domain attribute, building new class for composite 
attributes, shortening the length of the CCH relationship and defining methods. They are 
described with examples below. 
（1）Building the Attribute of Set Domain

The attribute value cannot be a set in a relational database or data warehouse. Additionally, 
the multiple attributes with Boolean values are generally adopted to denote one attribute of the set 
domain, in which the true value represents the existence of the element. In the object-relational 
data model, the attribute value may be made non-atomic by using the attribute domain SET, 
MULTISET or LIST. An example of the resident billing star schema is taken from Golfarelli et 
al. (1998), in which the dimension table SERVICE is established by the following statement. 

create class SERVICE {
　　　call_waiting_flag boolean;
　　　caller_id_flag boolean;
　　　voice_mail_flag boolean;
　　　cellular_flag boolean;
　　　internet_flag boolean;
　　　isdn_flag boolean };

Table 3: Physical design in Unix-SQL syntax 
crea te class DEPARTMENT

(dname string; 
 office string);   

create class COURSE 
(cname string; 

 cdesc string; 
 department DEPARTMENT); 

create class PERSON 
(lname string; 

 fname string; 
 sex string; 
 address string); 

create class STUDENT under PERSON 
(class string);

create class TRANSCRIPT 
(time TIME;

 course COURSE; 
 student STUDENT; 
 grade integer; 
 No. of student integer);

5.2 The Refinement of the Logical Design 

The variety of data types provided in object-relational systems favors 
the design on attribute domains, such as SET and CLASS. This section 
introduces four techniques to refine the translated schema by exploiting 
the beneficial characteristics of the object-relational model. These 
techniques are building the set domain attribute, building new class for 
composite attributes, shortening the length of the CCH relationship and 
defining methods. They are described with examples below.  

(1) Building the Attribute of Set Domain 
The attribute value cannot be a set in a relational database or data 

warehouse. Additionally, the multiple attributes with Boolean values are 
generally adopted to denote one attribute of the set domain, in which the 
true value represents the existence of the element. In the object-relational 
data model, the attribute value may be made non-atomic by using the 
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These attributes can be replaced by a single attribute, as in the statement below, 
create class SERVICE

　　　{ service_option set varchar(20) 
　　　default {

'

call_waiting', 

'

caller_id', 

'

voice_mail', 

'

cellular', 

'

internet', 

'

isdn'}
};

where the attribute is given the default value consisting of all considered values of the set. The 
query of the ORDW can thus be simplified and made more efficient by using IN to test the 
existence of elements, instead of examining multiple attributes. 
（2）Building a New Class for Composite Attributes

A composite attribute in a relational database is defined in terms of separate attributes. 
When the domain of a composite attribute occurs frequently for many attributes in a class, 
the separated attributes may resemble each other, and can therefore be replaced by a CCH to 
simplify the class in object-relational data. 

An example of a software vendor ś sales is taken from Golfarelli et al. (1998), where the 
dimension table CUSTOMER is as follows.

class CUSTOMER {
　　　name string;
　　　bill_to_city string;
　　　bill_to_state_other string;
　　　bill_to_country string;
　　　ship_to_city string;
　　　ship_to_state_other string;
　　　ship_to_country string;
　　　… };
The attributes bill_to_city, bill_to_state_other and bill_to_country resemble the attributes 

ship_to_city, ship_to_state_other and ship_to_country. A new class comprising attributes city, 
state_other and country is established with CCH relationships into class CUSTOMER, as given 
by the statement below,

create class PLACE {
　　　city string;
　　　state_other string;
　　　country string; };

create class CUSTOMER {  
　　　name string;
　　　bill_to PLACE
　　　ship_to PLACE;
　　　… };

（3）Decreasing the Length of the CCH Relationship
Since the pruning and grafting processes in building the EDF schema are artificial, the path 

of the translated CCH relationship might be very long because of designer preference. If the 
predicate of the data query involves the node getting far from the fact in the EDF schema, then 
the traversal cost of the query rises, downgrading the performance. To avoid this situation, the 
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designer can graft the sub-tree to shorten the length of CCH based on the trend of data queries. 
The motivation of this modification is similar to that of de-normalization in databases. 
（4）Adding Methods into Classes

In the object-relational data model, the predicate of a data query might include a 
complicated formula, which raises the difficulty for users in querying. A good ORDW design 
should define a complex query to be a method within the class. Accordingly, users can directly 
invoke the method by adding the class name as is the first argument in the formula for the query 
to simplify and ease the query statement. 

6. CONCLUSION

The contribution of this work is providing a semi-automated approach to construct an 
object-relational data warehouse from object-relational databases efficiently. First, we present an 
EDF model for conceptual design of ORDW. The EDF model well represents facts, dimensions, 
super-class/subclass and inheritance, and it also preserves the elegant properties of DF model 
to enable users to express intuitively queries by the EDF query diagram. Second, we develop a 
semi-automated methodology for obtaining the EDF schema directly from the EER schema. The 
semi-automated methodology reduces the manpower on conceptual design of ORDW. Third, 
we develop an algorithm to translate the EDF schema into a logical design and also its physical 
codes. Additionally, exploiting the advantage of the domain properties, we provide the methods 
to refine the translated result to be more efficient on space and data query.

The automated transformation from conceptual design to logical design is significant in 
software engineering, since it can shorten the life-cycle of ORDW development by reducing 
the time and the amount of coding errors during the designing period. All proposed methods 
could be implemented as components or functions within a software design tool to accelerate 
the construction of ORDW. Our future work will be devoted to developing the methodology for 
integrating DW and ORDW in the conceptual level.
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