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Abstract
Causal explanatory study is a very important research method in empirical research 

whereof research models are frequently validated by multiple linear regressions (MLR) with 

significant factors sought. An alternative to MLR is Bayesian regressions where statistical 

inferences are made with samples drawn from posterior distributions. Efficient simulation 

algorithms of the Markov chain Monte Carlo type have made Bayesian regressions 

practical. We propose a heuristic method based on the outputs of MLR to construct 

informative priors for Bayesian regressions. Data collected from two empirical studies 

of information systems (IS) impact on performance is used to demonstrate the proposed 

method. Deviance information criterion shows that this heuristic procedure significantly 

improves a Bayesian modeling with uninformative priors. When credible intervals are used 

to locate significant factors, it is found that the heuristic Bayesian approach, capable of 

finding delicate drivers, can help design better diagnostics for IS problems.
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摘要

因果解釋性研究是實證研究中很重要的一種研究方法，在實證研究中學者常使用複

迴歸方法來驗證研究模式並找到顯著因子。貝氏迴歸是一種不同於複迴歸的分析工具，

它使用事後機率抽取樣本來做統計推論，由於馬可夫鏈蒙地卡羅演算法可以有效率依機

率分佈來抽取樣本，貝氏迴歸分析已變得越來越可行。本研究提出一個基於複迴歸分析

結果的啟發式方法來建構貝氏迴歸分析的資訊事前機率，來自於兩個不同的實證研究資

料將被用來測試此方法，這兩個實證研究皆是在探討資訊系統對績效的影響。偏離資訊

法則顯示出此一啟發式方法能顯著的改善使用非資訊事前機率塑模的貝氏迴歸分析，當

信任區間被用來尋找顯著因子時，我們發現此一新方法能找到更細膩的因子且可以設計

出更好的方法來診斷資訊系統問題。

關鍵字：研究方法、因果解釋性研究、資訊系統影響、貝氏迴歸、模式選擇
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1. INTRODUCTION

Causal explanatory study is a very important research method in empirical research. A 
causal explanatory study is“designed to determine whether one or more variables explain 
the causes or effects of one or more outcome (dependent) variables＂(Cooper and Schindler, 
2008). An empirical study frequently starts with a literature review to set up a research model 
relating various constructs of interest. Questionnaire survey or secondary data collection is then 
conducted. After that, various statistical tools can be used to validate the research model with 
the collected data. Popular statistical tools include multiple linear regression (Hogg and Tannis, 
1997) and structural equation modelling (Diamantopoulos and Siguaw, 2000). This study is 
focused on the former technique and its Bayesian counterpart.

A multiple linear regression (MLR) expresses a dependent variable as a linear combination 
of multiple independent variables plus a random noise. Techniques of parameters estimation 
and significance detection for MLR can be found in many textbooks of statistics (Devore, 2004; 
Hogg and Tannis, 1997). The statistics used in MLR is called“frequentist statistics＂, which 
assumes that we can make random samples repeatedly and the observed data is just one of these 
realizations (Garthwaite et al., 2002).

A competing approach to frequentist statistics is called“Bayesian statistics＂, where the 
observed data is not re-sampled but rather used to update our prior belief of distributions for 
parameters of interest. In the Bayesian approach, regression parameters are considered random 
variables (in contrast to the constant value perspective of MLR) with their own probability 
distribution functions. Using Bayes t́heorem and the observed data, prior distributions are 
updated to posterior distributions, of which samples are drawn to make statistical inferences 
(Garthwaite et al., 2002; Urbach, 1992).

A classical MLR lacks the flexibility to incorporate our prior belief into a regression 
analysis, and“p-values are commonly misinterpreted in this manner＂(Burton et al., 
1998, p. 318). On the other hand, a Bayesian approach gives us more flexibility to control 
regression parameters and results from a Bayesian regression are more intuitive. Indeed, 
the Bayesian approach“is quite similar to how the human mind works and thus it feels 
very natural＂(Thorburn, 2005, p. 80). Bayesian statistics has gained the attention of many 
econometricians (Gallizo et al., 2002; Koop, 2003; Wright, 2003) and epidemiologists (Burton 
et al., 1998; Greenland, 2007).

Literature shows that previous information systems (IS) studies have used regression 
techniques other than MLR to analyze causal models. Bansal et al. (1993) compared the 
modeling performance of MLR and neural networks when data quality was a concern. They 
found that MLR outperformed neural nets in terms of forecasting accuracy, but the opposite was 
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true when the business value of the forecast was used to measure performance. The researchers 
also discovered that performance of the neural nets tended to be robust even when the data was 
corrupted by noise. Lately, Banerjee et al. (2005) used a dynamic Bayesian analysis to study 
drivers of Internet firm survival. However, they did not consider the priors selection and model 
comparison issues in their study.

The choice of a prior distribution reflects the information available to a user at the time of 
a Bayesian analysis. Unless the prior information has been overly distorted, it is convenient to 
choose mathematically tractable forms of priors and likelihood functions. This may be achieved 
through the use of conjugate priors where prior and posterior distributions are of the same 
type (Denison et al., 2002). In practice, Markov chain Monte Carlo (MCMC) type simulation 
techniques can be used to get a good insight of the posterior distributions. MCMC simulations 
require both an efficient algorithm and a powerful computer. With the incredible dissemination 
power of the Internet, WinBUGS program (Spiegelhalter et al., 2003) has become a very popular 
MCMC simulation package for Bayesian regression.

Cao et al. (2006) argued that different research paradigms may complement each other 
due to the interactions involved in different research methods and activities. In this research, 
we show that Bayesian regressions can become an alternative and effective tool in a causal 
explanatory study. The objectives of this research are (1) to study the prior distributions selection 
problem and to find an efficient and effective way to construct informative priors; (2) to locate 
and explain significant factors in Bayesian regressions with a sound foundation like the MLR 
approach; and (3) to compare MLR and Bayesian models with well-known model assessment 
criteria. Informative priors with an objective background will be sought. Two empirical studies 
of IS impact on performance based on the task technology fit theory will be used to show a 
novel priors selection method in Bayesian regressions.

This paper is organized as follows. In section 2, we introduce important concepts in MLR 
and Bayesian regressions. Deviance information criterion will be introduced to compare two 
Bayesian models. Section 3 is devoted to a discussion of the survey research that founds causal 
models in this study. In section 4, an empirical study is set up to collect the primary data for 
model validation. MLR and Bayesian regressions with uninformative priors are applied to 
analyze the data. We propose a heuristic method to construct informative priors in section 5. 
Comparison between MLR and Bayesian models, extraction of significant factors and a second 
empirical study are also presented in this section. Finally, we conclude in section 6 with a few 
remarks about implications of this study.

2. MATERIALS AND METHODS

We briefly review MLR especially in the area of parameter significance test. A careful 
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observation of the test leads us to a comparable parameter significance test in Bayesian 
regressions. Deviance information criterion will be used to compare different Bayesian models.

2.1 Multiple linear regressions

Kennedy (2003) has a good discussion on MLR from the viewpoint of an econometrician. 
Assumptions related to specification errors, disturbance bias, homoskedasticity, autoregression, 
exogeneity and multicollinearity are often checked before an MLR analysis is conducted. For 
the purpose of this discussion, it is assumed that the dependent variable Y is related to the 
independent variables x1, …, xk by a linear equation with parameters , …, . It is further 
assumed that the output is corrupted by a random noise  :
                                                Y = 0 + 1x1 + … + k xk +                                                          (1)

The regression parameters  ,…,  are fixed but unknown, and they can be estimated 
by several estimators given a set of observed data

posterior distributions are of the same type (Denison et al., 2002). In practice, Markov 
chain Monte Carlo (MCMC) type simulation techniques can be used to get a good 
insight of the posterior distributions. MCMC simulations require both an efficient 
algorithm and a powerful computer. With the incredible dissemination power of the 
Internet, WinBUGS program (Spiegelhalter et al., 2003) has become a very popular 
MCMC simulation package for Bayesian regression. 

Cao et al. (2006) argued that different research paradigms may complement each 
other due to the interactions involved in different research methods and activities. In 
this research, we show that Bayesian regressions can become an alternative and 
effective tool in a causal explanatory study. The objectives of this research are (1) to 
study the prior distributions selection problem and to find an efficient and effective 
way to construct informative priors; (2) to locate and explain significant factors in 
Bayesian regressions with a sound foundation like the MLR approach; and (3) to 
compare MLR and Bayesian models with well-known model assessment criteria. 
Informative priors with an objective background will be sought. Two empirical 
studies of IS impact on performance based on the task technology fit theory will be 
used to show a novel priors selection method in Bayesian regressions. 

This paper is organized as follows. In section 2, we introduce important concepts 
in MLR and Bayesian regressions. Deviance information criterion will be introduced 
to compare two Bayesian models. Section 3 is devoted to a discussion of the survey 
research that founds causal models in this study. In section 4, an empirical study is set 
up to collect the primary data for model validation. MLR and Bayesian regressions 
with uninformative priors are applied to analyze the data. We propose a heuristic 
method to construct informative priors in section 5. Comparison between MLR and 
Bayesian models, extraction of significant factors and a second empirical study are 
also presented in this section. Finally, we conclude in section 6 with a few remarks 
about implications of this study. 
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interval does not include zero. If H0 is rejected because of the other reason, then both 
endpoints in Eq. (4) are negative. This simple observation will form our basis to 
locate drivers in a Bayesian approach. 
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Though parameters estimation in MLR is easy, it is hard to interpret the result. 
Frequently a statement like “a 95% confidence interval for j  is (-.5, 1.5)” is 
misinterpreted as the true value of j  lies in the interval with a probability of .95. 
Urbach (1992, p. 322) explains why “no such probability statement is inferable”. The 
correct interpretation should be: if sufficiently many data sets niyx ii ,,1),,(  are 
realized according to the frequentist procedure described above and endpoints are 
computed by Eq. (4), then approximately 95% of these intervals will contain the true 
value of j . Since the particular interval (-.5, 1.5) is just one of these intervals, it may 
or may not belong to the group of intervals containing j . 
 
2.2 Bayesian regressions 

Bayesian regressions consider each regression parameter a random variable with 
its own probability distribution function (pdf). If the random noise  in Eq. (1) is 
assumed to have a zero mean and a constant but unknown variance , then the 
parameters of interest in a regression study include 

2

),,,( 10 k and . Let 
D = denote the data collected by a researcher. According to 
Bayes’ theorem, the posterior distribution of parameters of interest after observing 
data D is given by 

2

},,1),,{( niyx ii

)(
),(),|()|,(

22
2

Dp
pDpDp , (5)

where ),( 2p  is a prior distribution of parameters given by a user, the likelihood 
function ),|( 2Dp  is the probability of observing D with given model 
parameters, and ddpDpDp ),(),|()( 22  is the marginal likelihood. 
We will handle the prior distributions problem in a later section. But, first let us 
explain how to generalize the simple observation about the significance test of 
parameters in MLR to Bayesian regressions. 

In Bayesian regressions, inferences about parameters are made by using samples 
drawn from the posterior distribution. After these posterior samples are tallied on a 
real line, interesting percentile points are marked on the real line. For example, 
assume that 10000 samples have been drawn for j according to the posterior 

distribution )|,( 2 Dp . These 10000 numbers are lined up on a real line and the 
2.5%, 50% and 97.5% sample cumulative points are determined. Let a denote the 
2.5% sample cumulative point and b the 97.5% sample cumulative point. Then, out of 
the 10000 posterior samples, 95% of them are between a and b. Thus , called the 
centralized 95% credible interval, contains 
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where ),( 2p  is a prior distribution of parameters given by a user, the likelihood 
function ),|( 2Dp  is the probability of observing D with given model 
parameters, and ddpDpDp ),(),|()( 22  is the marginal likelihood. 
We will handle the prior distributions problem in a later section. But, first let us 
explain how to generalize the simple observation about the significance test of 
parameters in MLR to Bayesian regressions. 

In Bayesian regressions, inferences about parameters are made by using samples 
drawn from the posterior distribution. After these posterior samples are tallied on a 
real line, interesting percentile points are marked on the real line. For example, 
assume that 10000 samples have been drawn for j according to the posterior 

distribution )|,( 2 Dp . These 10000 numbers are lined up on a real line and the 
2.5%, 50% and 97.5% sample cumulative points are determined. Let a denote the 
2.5% sample cumulative point and b the 97.5% sample cumulative point. Then, out of 
the 10000 posterior samples, 95% of them are between a and b. Thus , called the 
centralized 95% credible interval, contains 
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since  Thus, the left endpoint of Eq. (4) is positive and the confidence 

interval does not include zero. If H0 is rejected because of the other reason, then both 
endpoints in Eq. (4) are negative. This simple observation will form our basis to 
locate drivers in a Bayesian approach. 
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Though parameters estimation in MLR is easy, it is hard to interpret the result. 
Frequently a statement like “a 95% confidence interval for j  is (-.5, 1.5)” is 
misinterpreted as the true value of j  lies in the interval with a probability of .95. 
Urbach (1992, p. 322) explains why “no such probability statement is inferable”. The 
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realized according to the frequentist procedure described above and endpoints are 
computed by Eq. (4), then approximately 95% of these intervals will contain the true 
value of j . Since the particular interval (-.5, 1.5) is just one of these intervals, it may 
or may not belong to the group of intervals containing j . 
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distributions problem in a later section. But, first let us explain how to generalize the simple 
observation about the significance test of parameters in MLR to Bayesian regressions.

In Bayesian regressions, inferences about parameters are made by using samples drawn 
from the posterior distribution. After these posterior samples are tallied on a real line, interesting 
percentile points are marked on the real line. For example, assume that 10000 samples have 
been drawn for βj according to the posterior distribution 
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Definition (significant factors): In a Bayesian regression, a predictor xj is significant if the 
centralized 95% credible interval (a,b) does not contain zero.

Efficient drawing of posterior samples is a major task in Bayesian regressions. Markov 
chain Monte Carlo type algorithms have been developed to sample data efficiently. Special 
cases of MCMC simulations include Gibbs sampling and Metropolis-Hastings algorithm. Since 
MCMC simulations are iterative procedures, it is important to make sure that the iteration 
converges before any posterior samples are taken into consideration for inferences making. 
This means that samples from the burn-in phase must be kept away. Two criteria are commonly 
used for checking the convergence: (1) trace plots of the sampled data; and (2) autocorrelation 
function plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps (Garthwaite 
et al., 2002).

Unlike MLR with OLS where only one set of estimated parameters is available for a 
given data set, Bayesian regressions have the freedom to choose different prior distributions for 
different results. This makes model comparison and selection an important issue in Bayesian 
regressions. Deviance information criterion (DIC) is a useful tool for comparing different 
Bayesian models (Spiegelhalter et al., 2002). The deviance is defined by the log likelihood 
function as
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The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  
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where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

                                                 
(6)

The expectation 

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

 taken over the parameter space measures how well the 
model fits the data. The larger it is, the worse the model. This 

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

 is an in-sample assessment 
measure like SSE in MLR. Additionally, the effective number of parameters is defined by 

                                                             

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

                                                        (7)

where 

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

 are the expected values of model parameters. Here expected values are all 



資訊管理學報　第十六卷　第二期158

taken with respect to the posterior distribution of parameters. The larger this effective number 
is, the easier it is for the model to fit the data. This PV is similar to a model complexity term in 
statistical learning theory (Vapnik, 1998). Finally, the DIC is defined as

                                                               

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

                                                               (8)

where constituent terms on the right side work against each other. For example, as PV goes 
up, 

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

 goes down and as PV goes down, 

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

 goes up. The idea for model selection is to choose 
a model with small DIC, i.e. balancing the effects of data fit (

the posterior distribution of the parameter. Based on the confidence interval 
perspective of significance test in MLR, we make the following definition. 
Definition (significant factors): In a Bayesian regression, a predictor  is 
significant if the centralized 95% credible interval  does not contain zero. 

jx
),( ba

Efficient drawing of posterior samples is a major task in Bayesian regressions. 
Markov chain Monte Carlo type algorithms have been developed to sample data 
efficiently. Special cases of MCMC simulations include Gibbs sampling and 
Metropolis-Hastings algorithm. Since MCMC simulations are iterative procedures, it 
is important to make sure that the iteration converges before any posterior samples are 
taken into consideration for inferences making. This means that samples from the 
burn-in phase must be kept away. Two criteria are commonly used for checking the 
convergence: (1) trace plots of the sampled data; and (2) autocorrelation function 
plots. For a convergent simulation, the trace plots exhibit a saw-like shape while the 
autocorrelation function plots drop very quickly to nearly zero after a few lag steps 
(Garthwaite et al., 2002). 

Unlike MLR with OLS where only one set of estimated parameters is available 
for a given data set, Bayesian regressions have the freedom to choose different prior 
distributions for different results. This makes model comparison and selection an 
important issue in Bayesian regressions. Deviance information criterion (DIC) is a 
useful tool for comparing different Bayesian models (Spiegelhalter et al., 2002). The 
deviance is defined by the log likelihood function as 

)),|(log(2),( 22 DpV . (6)

The expectation )(
2, VEV  taken over the parameter space measures how 

well the model fits the data. The larger it is, the worse the model. This V  is an 
in-sample assessment measure like SSE in MLR. Additionally, the effective number 
of parameters is defined by  

),( 2VVPV , (7)

where 2, are the expected values of model parameters. Here expected values are 
all taken with respect to the posterior distribution of parameters. The larger this 
effective number is, the easier it is for the model to fit the data. This  is similar to 
a model complexity term in statistical learning theory (Vapnik, 1998). Finally, the 
DIC is defined as 

VP

VPVDIC , (8)
where constituent terms on the right side work against each other. For example, as 

 goes up, VP V  goes down and as  goes down, VP V  goes up. The idea for model 
selection is to choose a model with small DIC, i.e. balancing the effects of data fit (V ) 
and model complexity ( ). This is similar to the famous Occam’s razor principle 
which says that, with approximately equal data fit capacity, parsimonious models are 
better than complex ones (Witten and Frank, 2005). Late developments in support 
vector machines also support this viewpoint of model selection (Schköpf and Smola, 
2002). According to a recommendation from Spiegelhalter et al. (2003), if the 
difference in DIC between two models is more than 10, one might definitely rule out 
the model with a higher DIC. When the difference is between 5 and 10, it is 
considered significant. On the other hand, if the difference in DIC is less that 5, it 
could be misleading to report results from the model with a lower DIC. We take this 
recommendation in our later demonstration of Bayesian regressions. 

VP

 7

) and model complexity (PV). 
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model with a higher DIC. When the difference is between 5 and 10, it is considered significant. 
On the other hand, if the difference in DIC is less that 5, it could be misleading to report results 
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3. DESIGN FOR A CASUAL RESEARCH

In order to exemplify the Bayesian regression approach, we set up a survey research based 
on the task technology fit theory to collect empirical data.

3.1 Task technology fit (TTF) theory

The influence of information technology (IT) on individual performance has been an 
ongoing issue in IS research. There are two main streams on which technology to performance 
chain (TPC) study can be based. The first stream focuses on utilization of technology and 
implicitly assumes that increased utilization results in improved performance. This stream, 
exemplified by technology acceptance model (Davis, 1989), employs users  ́attitudes and beliefs 
to predict utilization of IT. When IT utilization is assured because of task requirements or other 
reasons, the second stream of TPC study prevails. In this stream of study, the fit between adopted 
technology and task characteristics becomes a crucial factor impacting users  ́performance. 
For example, different types of decision making tasks (in trend or detailed analysis) often 
require different types of data representation technology (by graphs or tables). Using laboratory 
experiments, previous studies have shown the impact of TTF on performance (Dickson, et al., 
1986; Vessey, 1991).

Goodhue and Thompson (1995) argued that for an IT to have positive influences on a 



A heuristic Bayesian regression approach for causal explanatory study: Exemplified by an IS impact study 159

user ś performance, the technology must have a good fit with the tasks it supports and proposed 
the TTF theory. According to the TTF theory, the existence of a fit among task, technology 
and user promotes the willingness of a user to use the technology and thus improves the user ś 
work performance (Figure 1). Tasks are defined as the actions performed by users to turn inputs 
into outputs. Technologies are tools provided to users to finish their tasks. Users have different 
characteristics that may affect how they use technologies to carry out tasks. Task technology fit 
is“the correspondence between task requirements, individual abilities and the functionality of 
the technology＂(Goodhue and Thompson, 1995, p.218).

The antecedents of TTF involve complex interactions between tasks, technologies and 
users characteristics. Within the domain of decision making, TTF has been successfully 
measured (Goodhue, 1995). Two additional IT-supported task domains are included in Goodhue 
and Thompson (1995), namely responding to changed business environments and conducting 
day to day business operations. Instruments from Goodhue (1995) were borrowed to measure 
TTF in the domain of decision making, and new questions were developed for measuring 
TTF in the two new task domains. After conducting the reliability and validity assessment, 
Goodhue and Thompson (1995) preserved 34 questions in their final questionnaire. Using factor 
analysis, these questions were categorized into eight TTF factors: data quality, data locatability, 
authorization, compatibility, ease of use/training, production timeliness, systems reliability, and 
relationship with users. The first five factors are related to user tasks in decision making. The 
next two are related to user tasks in conducting day to day business operations and the last one 
is focused on responding to changed business requirements. These factors are further explained 
as follows:

1.  Data quality: This factor includes three dimensions which are currency of the data, 
proper maintenance of right data and right granularity of the data.

2.  Data locatability: Two dimensions are associated with this factor, and they are ease of 
determining what data is available where and ease of determining the meaning of a data 
element.

3.  Authorization: User perception of obtaining authorization to access data necessary to do 
the job.

4.   Compatibility: User perception of consolidating data from different sources without 
inconsistency.

5.  Ease of use/Training: This factor has two dimensions. These are ease of use of hardware 
and software, and obtaining proper training for using the IS.

6. Production timeliness: The IS meets task schedule.
7. System reliability: The IS is dependable and provides consistent service level of access.
8.  Relationship with users: This factor has five dimensions. Altogether, they measure the 

ability of the IS to meet changed business requirements.
i. IS understanding of business: Does the IS understand business mission and goal?
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ii.  IS interest and dedication: Does the IS have high interest and dedication to support 
customers?

iii. Responsiveness: Is the IS responsive to service requests?
iv. Consulting: Does the IS offer consulting service?
v. IS performance: Does the IS deliver agreed-upon solutions?

The TTF theory predicts that these eight factors have strong influences on a user ś 
performance. Goodhue and Thompson (1995) suggested that TTF could be a diagnostic tool to 
evaluate whether information systems and services are meeting user requirements and that TTF 
might be a good surrogate measure of IS success when utilization is assured. Thus, the measure 
of TTF can be used to identify gaps between systems capabilities and user requirements. By 
understanding specific gaps, managers can make decision on stopping or redesigning systems or 
redesigning tasks to exploit IT potential.

Figure 1: Task technology fit (Goodhue and Thompson, 1995)
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time.
3.  Tax and legal information services. People need tax and legal advices when they make 

major financial decisions. Customer relationship management tells us that supplying 
these services may result in cross sales of other products from an affiliated company.

Performance of the above three tasks will be used as the dependent variable in our survey 
research, while TTF factors are the independent variables. 

3.3 The research model

The task and technology in Figure 1 are the same for every survey respondent. The task 
is one of the three major tasks explained in the last section, and the adopted technology is 
the Mobile Dr. Insurance system. Therefore, only individual characteristics can affect TTF 
degrees in Figure 1. To demonstrate the Bayesian approach for a causal explanatory study, we 
restrict our attention to the second part of the TTF model, namely the impact of TTF factors on 
performance. It was found that users of the subject system must pay a fee to use the services. 
Therefore, users of the system were properly authorized for access to data. Thus, we dropped the 
authorization factor as an independent variable in this study. Corresponding to the three major 
tasks of an insurance agent, three causal effects of seven TTF factors on task performance are 
modeled in Figure 2.

Figure 2: The research model
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4.1 Data description

In this research, data collected from a questionnaire survey is used to support an empirical 
study of IS impact on performance. The input variables include seven TTF factors (data 
quality, data locatability, compatibility, timeliness, system reliability, ease of use/training and 
relationship with users) and the output variable is user ś performance of the three major tasks for 
an insurance agent. Three causal effects will be analyzed in total.

4.2 Samples collection

An Internet-based survey was conducted with the sponsorship and cooperation of company 
G, developer of the Mobile Dr. Insurance system. Users of the system were invited by e-mails to 
answer questionnaires published on the company ś web site between October 1 and November 
13 in 2005. In total, 307 agents submitted complete responses to the survey.

Out of the 307 useful samples, there were 45% male and 55% female. Regarding the age 
distribution, respondents in the highest percentage group (48%) were between 31 and 40 years 
old, while agents in the lowest percentage group (24%) were 41 years old and above. In terms of 
education, 41% of the respondents received associate degree, 33% received college degree and 
26% received high school diploma.

The questionnaire was prepared according to established procedures in Nunnally (1978). 
All questions were made according to the validated TTF factors explained previously.  
Measurement methods are described as follows.

1. Task technology fit factors

Survey questions related to the seven TTF factors used a 5-point Likert scale to collect 
responders  ́feedback for the degree of task technology fit. A user ś responses to questions of the 
same TTF factor were averaged to get a representative score for the factor.

2.  User’s task performance

Impacts of the subject system on task performance were measured by the respondents śelf-
assessment of how useful utilizing the system had assisted them in performing the tasks of 
recruiting new contracts, post-contract customer services and tax and legal information services. 
The user ś task performance was measured by a 5-point Likert scale.

3. Reliability and validity

Cronbach ś  was used to measure the reliability of research instruments. In practical 
applications, the value of Cronbach ś  should exceed .5, preferably more than .7 (Nunnally, 
1978). The Cronbach ś  of our instrument ranged from .595 to .885, indicating a medium 
high to high reliability. To ensure content validity, our questionnaire design was based on well-
established and validated instruments in the literature (Goodhue and Thompson, 1995).
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4.3 Results from MLR

An MLR uses the OLS estimator to compute regression parameters. Tables 1, 2 and 3 
summarize results from the MLR analysis for the three tasks respectively. The respective 
adjusted R2 for these MLR models is .484, .618 and .399, and each model is significant at the 
level of .05. Unlike time series data, adjusted R2 for cross sectional data is frequently low. 
Indeed, adjusted R2 for the TTF model in Goodhue and Thompson (1995) was only .14. Our 
models show a moderate level of goodness-of-fit with the stated R2 values. Since each variance 
inflation factor (VIF) is smaller than 10, the data does not have any multicollinearity issue 
(Devore, 2004). Lower bound of the 95% confidence interval is denoted as 95%-lb, while upper 
bound is denoted as 95%-ub. With a cut-off of .05 for the p-value (the Sig column), it can be 
seen that data quality and timeliness are both significant factors affecting user ś performance for 
task 1 positively. This means the higher a user evaluates the fit in data quality and production 
timeliness, the more the user perceives a positive impact of the IS on recruiting new contracts. 
These two drivers belong to domains in decision making and conducting day to day business 
operations respectively. During the process of recruiting new contracts, an agent needs to make 
many decisions such as which customers to contact and what kinds of insurance products to 
recommend. Data quality is the main concern of agents in this domain of decision making. 
Recruiting new contracts is a day to day operation for most insurance agents, therefore it is 
important for the IS to meet task schedule (production timeliness).

Regarding the second task, data quality, timeliness, system reliability and ease of use/
training are drivers of performance. These drivers cover domains in decision making and 
conducting day to day operations as above. The third task has the most drivers covering all three 
domains considered in Goodhue and Thompson (1995). All drivers have their 95% confidence 
intervals with endpoints of the same sign as claimed before. Standard error (Std. err) is an 
estimate of the standard deviation for a regression parameter. The smaller it is, the more efficient 
OLS has estimated a regression parameter (Kennedy, 2003).

Table 1: Multiple linear regression for task 1

TTF factor Coeff. Std. err T Sig 95%-lb 95%-ub VIF
(Constant) .019 .221 .087 .930 -.415 .454

Data quality .452* .078 5.814 .000 .299 .605 2.479
Data locatability .063 .051 1.223 .222 -.038 .164 1.846

Compatibility .102 .055 1.862 .064 -.006 .209 1.715
Timeliness .206* .056 3.683 .000 .096 .317 1.537

System reliability .032 .049 .669 .504 -.063 .128 1.490
Easy of use/Training .000 .051 .010 .992 -.099 .100 1.811

Relationship with user .118 .071 1.660 .098 -.022 .258 2.258
Adjusted R2 = .484*.  
*: significant with p-value < .05
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Table 2: Multiple linear regression for task 2

TTF factor Coeff. Std. err T Sig 95%-lb 95%-ub VIF
(Constant) .258 .174 1.486 .138 -.084 .600

Data quality .542* .061 8.847 .000 .421 .662 2.479
Data locatability -.031 .040 -.761 .447 -.110 .049 1.846

Compatibility .077 .043 1.781 .076 -.008 .161 1.715
Timeliness .095* .044 2.144 .033 .008 .181 1.537

System reliability .134* .038 3.498 .001 .058 .209 1.490
Easy of use/Training .170* .040 4.260 .000 .091 .248 1.811

Relationship with user -.011 .056 -.204 .839 -.122 .099 2.258
Adjusted R2 = .618*. 
*: significant with p-value < .05

Table 3: Multiple linear regression for task 3

TTF factor Coeff. Std. err t Sig 95%-lb 95%-ub VIF
(Constant) .057 .240 .238 .812 -.415 .529

Data quality .194* .085 2.292 .023 .027 .360 2.479
Data locatability .060 .056 1.080 .281 -.050 .170 1.846

Compatibility .176* .059 2.971 .003 .060 .293 1.715
Timeliness .156* .061 2.558 .011 .036 .276 1.537

System reliability .024 .053 .448 .654 -.080 .128 1.490
Easy of use/Training .116* .055 2.110 .036 .008 .225 1.811

Relationship with user .172* .077 2.226 .027 .020 .325 2.258
Adjusted R2 = .399*. 
*: significant with p-value < .05

4.4 Results from Bayesian regressions with uninformative priors

WinBUGS was chosen to conduct Bayesian regressions for the casual explanatory study. 
This program can use various MCMC techniques including Gibbs sampling, Metropolis-
Hastings algorithm and adaptive rejection sampling, and chooses the correct technique 
automatically (Congdon, 2003). The following code snippet specifies a linear regression of y 
(performance) on the seven TTF factors x1 (data quality),…,x7 (relationship with user).

for (i in 1:N) {
　y[i] ~ dnorm(mu[i], tau)
　　mu[i] <- a0 + a1*x1[i] + a2*x2[i] + a3*x3[i] + 
 a4*x4[i] + a5*x5[i] + a6*x6[i] + a7*x7[i]
 }

The above program assumes a normally distributed random noise of mean 0 and variance 
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for (i in 1:N) { 

y[i] ~ dnorm(mu[i], tau) 
mu[i] <- a0 + a1*x1[i] + a2*x2[i] + a3*x3[i] +  
a4*x4[i] + a5*x5[i] + a6*x6[i] + a7*x7[i] 

} 
The above program assumes a normally distributed random noise of mean 0 and 

variance . WinBUGS uses a precision variable tau ( ) to specify the 
variance. Prior distributions are needed for the random variables a0, a1,…, a7 and tau. 
Under the assumption that no particular value of these parameters is preferred, the 
following uninformative priors were used: 

12 2

a0 ~ dnorm(0, 1.0E-6) 
a1 ~ dnorm(0, 1.0E-6) 
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distributions are needed for the random variables a0, a1,…, a7 and tau. Under the assumption 
that no particular value of these parameters is preferred, the following uninformative priors were 
used:

 a0 ~ dnorm(0, 1.0E-6)
 a1 ~ dnorm(0, 1.0E-6)
 (Same formulae for the other regression parameters)
 tau ~ dgamma(0.001, 0.001)

Since the regression parameters a0, …, a7 can take any positive or negative value with 
equal chances, we assume that they are normally distributed with a mean of 0 and a large 
variance of 106. The precision variable tau must be positive and therefore can only assume a 
distribution function with positive support. A common uninformative prior for tau is given by 
the gamma distribution with pdf 

(Same formulae for the other regression parameters) 
tau ~ dgamma(0.001, 0.001) 

Since the regression parameters a0, …, a7 can take any positive or negative value 
with equal chances, we assume that they are normally distributed with a mean of 0 
and a large variance of 106. The precision variable tau must be positive and therefore 
can only assume a distribution function with positive support. A common 
uninformative prior for tau is given by the gamma distribution with 
pdf . 0);(/)(),,(~ 1 xrexxprgammaX xrr

With the above setting for Bayesian regressions and an initial value of 0 for the 
parameters a0,…, a7 and 1 for tau, plots in Figure 3 and Figure 4 confirm that the 
MCMC simulation has converged after 5000 iterations. At this stage, 10000 more 
iterations were made to collect posterior samples for inference makings. All these 
steps took only a few minutes for a moderate personal computer to complete. Sample 
mean, sample standard deviation, Monte Carlo error (MC error), 2.5%, 50% (median) 
and 97.5% sample cumulative points are reported in Table 4.  
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Figure 3: Trace plot of selected parameters (a1 and tau) 
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Figure 4: Autocorrelation function plot of selected parameters (a1 and tau) 
 

Table 4: Bayesian regression with uninformative priors for task 1 

TTF factor mean std. dev MC 
error 

2.5% median 97.5%

(Constant) .023 .223 .0023 -.413 .023 .461 
Data quality .453* .078 .0007 .301 .453 .608 

Data locatability .063 .051 .0005 -.039 .063 .163 
Compatibility .101 .054 .0006 -.007 .101 .208 

Timeliness .206* .056 .0004 .096 .205 .318 
System reliability .033 .049 .0005 -.063 .033 .128 

Easy of use/Training .001 .050 .0005 -.099 .001 .098 
Relationship with user .118 .072 .0006 -.020 .117 .260 

*: the centralized 95% credible interval does not contain 0 

 14

.
With the above setting for Bayesian regressions and an initial value of 0 for the parameters 

a0,…, a7 and 1 for tau, plots in Figure 3 and Figure 4 confirm that the MCMC simulation 
has converged after 5000 iterations. At this stage, 10000 more iterations were made to collect 
posterior samples for inference makings. All these steps took only a few minutes for a moderate 
personal computer to complete. Sample mean, sample standard deviation, Monte Carlo error (MC 
error), 2.5%, 50% (median) and 97.5% sample cumulative points are reported in Table 4. 

Figure 3: Trace plot of selected parameters (a1 and tau)

Figure 4: Autocorrelation function plot of selected parameters (a1 and tau)

　　

(Same formulae for the other regression parameters) 
tau ~ dgamma(0.001, 0.001) 

Since the regression parameters a0, …, a7 can take any positive or negative value 
with equal chances, we assume that they are normally distributed with a mean of 0 
and a large variance of 106. The precision variable tau must be positive and therefore 
can only assume a distribution function with positive support. A common 
uninformative prior for tau is given by the gamma distribution with 
pdf . 0);(/)(),,(~ 1 xrexxprgammaX xrr

With the above setting for Bayesian regressions and an initial value of 0 for the 
parameters a0,…, a7 and 1 for tau, plots in Figure 3 and Figure 4 confirm that the 
MCMC simulation has converged after 5000 iterations. At this stage, 10000 more 
iterations were made to collect posterior samples for inference makings. All these 
steps took only a few minutes for a moderate personal computer to complete. Sample 
mean, sample standard deviation, Monte Carlo error (MC error), 2.5%, 50% (median) 
and 97.5% sample cumulative points are reported in Table 4.  

a1

iteration
495049004850

    0.2
    0.4
    0.6
    0.8

tau

iteration
495049004850

    1.5
    2.0
    2.5
    3.0
    3.5

 
Figure 3: Trace plot of selected parameters (a1 and tau) 

 
a1

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

tau

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

Figure 4: Autocorrelation function plot of selected parameters (a1 and tau) 
 

Table 4: Bayesian regression with uninformative priors for task 1 

TTF factor mean std. dev MC 
error 

2.5% median 97.5%

(Constant) .023 .223 .0023 -.413 .023 .461 
Data quality .453* .078 .0007 .301 .453 .608 

Data locatability .063 .051 .0005 -.039 .063 .163 
Compatibility .101 .054 .0006 -.007 .101 .208 

Timeliness .206* .056 .0004 .096 .205 .318 
System reliability .033 .049 .0005 -.063 .033 .128 

Easy of use/Training .001 .050 .0005 -.099 .001 .098 
Relationship with user .118 .072 .0006 -.020 .117 .260 

*: the centralized 95% credible interval does not contain 0 

 14

(Same formulae for the other regression parameters) 
tau ~ dgamma(0.001, 0.001) 

Since the regression parameters a0, …, a7 can take any positive or negative value 
with equal chances, we assume that they are normally distributed with a mean of 0 
and a large variance of 106. The precision variable tau must be positive and therefore 
can only assume a distribution function with positive support. A common 
uninformative prior for tau is given by the gamma distribution with 
pdf . 0);(/)(),,(~ 1 xrexxprgammaX xrr

With the above setting for Bayesian regressions and an initial value of 0 for the 
parameters a0,…, a7 and 1 for tau, plots in Figure 3 and Figure 4 confirm that the 
MCMC simulation has converged after 5000 iterations. At this stage, 10000 more 
iterations were made to collect posterior samples for inference makings. All these 
steps took only a few minutes for a moderate personal computer to complete. Sample 
mean, sample standard deviation, Monte Carlo error (MC error), 2.5%, 50% (median) 
and 97.5% sample cumulative points are reported in Table 4.  
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Figure 3: Trace plot of selected parameters (a1 and tau) 
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Figure 4: Autocorrelation function plot of selected parameters (a1 and tau) 
 

Table 4: Bayesian regression with uninformative priors for task 1 

TTF factor mean std. dev MC 
error 

2.5% median 97.5%

(Constant) .023 .223 .0023 -.413 .023 .461 
Data quality .453* .078 .0007 .301 .453 .608 

Data locatability .063 .051 .0005 -.039 .063 .163 
Compatibility .101 .054 .0006 -.007 .101 .208 

Timeliness .206* .056 .0004 .096 .205 .318 
System reliability .033 .049 .0005 -.063 .033 .128 

Easy of use/Training .001 .050 .0005 -.099 .001 .098 
Relationship with user .118 .072 .0006 -.020 .117 .260 

*: the centralized 95% credible interval does not contain 0 
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Table 4: Bayesian regression with uninformative priors for task 1

TTF factor mean std. dev MC error 2.5% median 97.5%
(Constant) .023 .223 .0023 -.413 .023 .461

Data quality .453* .078 .0007 .301 .453 .608
Data locatability .063 .051 .0005 -.039 .063 .163

Compatibility .101 .054 .0006 -.007 .101 .208
Timeliness .206* .056 .0004 .096 .205 .318

System reliability .033 .049 .0005 -.063 .033 .128
Easy of use/Training .001 .050 .0005 -.099 .001 .098

Relationship with user .118 .072 .0006 -.020 .117 .260
*: the centralized 95% credible interval does not contain 0

How many samples should be collected after a convergence has been confirmed? In 
general, the more posterior samples are drawn, the more accurate the inference will be. Monte 
Carlo error is an estimate of the difference between a sample mean and the unknown true 
posterior mean. WinBUGS suggests that the simulation is run until Monte Carlo error for each 
parameter is less than 5% of the sample standard deviation. Based on this suggestion, it was 
determined that 10000 posterior samples were enough to make inferences for the parameters.

It is interesting to note that mean of each parameter in Table 4 is very close to estimated 
value of the same parameter in Table 1. The centralized 95% credible interval for data quality is 
(.301, .608). Since this interval does not contain zero, we can say that data quality is a driver (with 
p < .05 in the MLR sense). The same conclusion can be made for the timeliness factor, and the 
remaining five TTF factors are not significant. In this case, we observe that Bayesian regression 
and MLR have detected the same set of drivers for task 1.

When Bayesian regressions with uninformative priors are applied to task 2 and task 3, 
similar results can be observed. Table 5 summarizes results for the task 2 regression while 
Table 6 is for the task 3 regression. Again, sample means are close to estimated values in MLR. 
Drivers detected by Bayesian regressions are exactly the same as those from MLR.

Table 5: Bayesian regression with uninformative priors for task 2

TTF factor mean std. dev MC error 2.5% median 97.5%
(Constant) .261 .175 .0018 -.082 .261 .608

Data quality .543* .061 .0006 .423 .542 .664
Data locatability -.031 .040 .0004 -.111 -.031 .048

Compatibility .076 .043 .0005 -.009 .076 .160
Timeliness .094* .044 .0003 .007 .094 .182

System reliability .134* .038 .0004 .058 .134 .029
Easy of use/Training .170* .040 .0004 .092 .170 .247

Relationship with user -.012 .056 .0005 -.120 -.012 .101
*: the centralized 95% credible interval does not contain 0
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Table 6: Bayesian regression with uninformative priors for task 3

TTF factor mean std. dev MC error 2.5% median 97.5%
(Constant) .061 .242 .0025 -.413 .061 .540

Data quality .195* .085 .0008 .029 .194 .363
Data locatability .060 .055 .0005 -.050 .060 .169

Compatibility .176* .059 .0006 .058 .175 .291
Timeliness .155* .061 .0005 .035 .155 .277

System reliability .024 .053 .0006 -.081 .024 .128
Easy of use/Training .117* .055 .0006 .008 .117 .222

Relationship with user .172* .078 .0006 .022 .171 .327
*: the centralized 95% credible interval does not contain 0

5. INFORMATIVE PRIORS AND MODEL SELECTION

The Bayesian approach shines when informative priors are available. In this section, we 
propose a heuristic method based on the outputs of MLR to construct informative priors. This 
hybrid approach to Bayesian regressions improves research model significantly and makes 
casual explanation more interesting.

5.1 A heuristic method for constructing informative priors 

Prior selection is a major issue in Bayesian regressions. When credible evidences are 
available, there is no reason to ignore them in the construction of prior distributions. MLR is 
often considered objective in regression analysis since its main goal is to minimize the sum of 
squared errors. We propose to utilize the outputs of MLR as credible evidences to construct 
prior distributions as follows.

With the OLS estimator, MLR outputs estimated values and standard errors of regression 
parameters. In Table 1, the intercept parameter a0 has an estimated value of .019 and a standard 
error of .221, which translates into a precision of 1/(.221*.221) = 20.4746. Therefore, instead 
of an unbiased mean of 0 and a very large variance of 106, we can set up a more precise prior 
distribution for this parameter as a0~dnorm(.019, 20.4746). We feel that this approach is 
appropriate since MLR has made a good estimate for the mean and variance of a0.

The same procedure is carried out for each of the remaining parameters a1, …, a7. With 
these heuristic priors, MCMC simulation was conducted for task 1 as before. The simulation 
converged to a satisfactory stage after 5000 iterations. Results based on the 10000 posterior 
samples after convergence are reported in Table 7. A few observations can be made: (1) 
Standard deviations have been reduced substantially in the new model while MC errors are 
still under control. Therefore the new model is more efficient in parameter estimation than the 
old model; and (2) Two more factors, namely compatibility and relationship with user, become 
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significant in the causal model. Relationship with user belongs to the domain of responding to 
changed business environments. Users of the Mobile Dr. Insurance system consider recruiting 
new contracts a challenging task that requires them to be prepared for changed business 
environments. The inclusion of this driver is welcome since the highly competitive insurance 
industry in Taiwan has a fast changing business environment.

Table 7: Bayesian regression with heuristic informative priors for task 1

TTF factor mean std. dev MC error 2.5% median 97.5%
(Constant) .022 .151 .0016 -.275 .021 .317

Data quality .453* .051 .0005 .353 .453 .554
Data locatability .063 .035 .0003 -.006 .063 .131

Compatibility .101* .037 .0004 .029 .102 .175
Timeliness .206* .038 .0003 .132 .205 .281

System reliability .033 .033 .0004 -.034 .033 .098
Easy of use/Training .001 .034 .0004 -.067 .001 .067

Relationship with user .118* .048 .0004 .027 .118 .213
*: the centralized 95% credible interval does not contain 0
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number of independent variables, can be used. On the other hand, the Bayesian 
approach uses DIC of Eq. (8) to measure the fit of a Bayesian model. Since MLR 
yields only a set of regression parameters, DIC is not applicable to MLR. 
Nevertheless, the adjusted R2 can always be computed as long as a set of regression 
parameters is available. It is fair to use sample means of a Bayesian model to compute 
the adjusted R2 of the Bayesian model. In the following, we will use the adjusted R2 to 
compare an MLR model with a Bayesian model, and DIC to compare two Bayesian 
models. 

Using adjusted R2, the MLR model, the Bayesian model with uninformative 
priors (BU) and the Bayesian model with informative priors (BI) for task 1 regression 
virtually have the same level of goodness-of-fit. This outcome is expected since 
sample means of the Bayesian models are so close to their corresponding parameter 
values in MLR. On the other hand, DIC for BU is 626.239 and DIC for BI is 618.831. 
Because the difference between these two DIC values is plausible (> 5), heuristic 
informative priors improve Bayesian regressions in model assessment significantly 
(Spiegelhalter et al., 2003). 

Similar Bayesian regressions with heuristic informative priors were conducted 
for task 2 (Table 8) and task 3 (Table 9) regressions. The task 2 regression has a DIC 
of 479.397 and 471.956 respectively for uninformative and informative priors. The 
task 3 regression has a DIC of 677.723 and 670.298 respectively for uninformative 
and informative priors. The difference between two DIC values is about 7.4 in either 
case, thus BI is preferred over BU. In terms of the adjusted R2, all three models (MLR, 
BU and BI) have the same level of goodness-of-fit for either task 2 or task 3 
regression. We decide to choose BI as the final model for a causal explanatory study 
because it improves BU significantly with a plausible reduction of DIC and is as good 
as MLR and BU with the same adjusted R2. 
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Similar Bayesian regressions with heuristic informative priors were conducted for task 
2 (Table 8) and task 3 (Table 9) regressions. The task 2 regression has a DIC of 479.397 and 
471.956 respectively for uninformative and informative priors. The task 3 regression has a DIC 
of 677.723 and 670.298 respectively for uninformative and informative priors. The difference 
between two DIC values is about 7.4 in either case, thus BI is preferred over BU. In terms of 
the adjusted R2, all three models (MLR, BU and BI) have the same level of goodness-of-fit 
for either task 2 or task 3 regression. We decide to choose BI as the final model for a causal 
explanatory study because it improves BU significantly with a plausible reduction of DIC and is 
as good as MLR and BU with the same adjusted R2.

Table 8: Bayesian regression with heuristic informative priors for task 2

TTF factor mean Std. dev MC error 2.5% median 97.5%
(Constant) .260 .119 .0012 .026 .259 .492

Data quality .542* .040 .0004 .464 .542 .622
Data locatability -.031 .027 .0003 -.085 -.030 .023

Compatibility .076* .029 .0003 .019 .076 .134
Timeliness .094* .030 .0002 .036 .094 .153

System reliability .134* .026 .0003 .082 .134 .185
Easy of use/Training .170* .027 .0003 .117 .170 .223

Relationship with user -.012 .038 .0003 -.083 -.012 .063
*: the centralized 95% credible interval does not contain 0

Table 9: Bayesian regression with heuristic informative priors for task 3

TTF factor Mean std. dev MC error 2.5% median 97.5%
(Constant) .060 .164 .0017 -.263 .059 .381

Data quality .195* .056 .0005 .087 .195 .304
Data locatability .060 .038 .0004 -.015 .061 .135

Compatibility .176* .040 .0004 .097 .176 .255
Timeliness .155* .041 .0003 .075 .155 .237

System reliability .024 .036 .0004 -.048 .024 .095
Easy of use/Training .116* .037 .0004 .043 .117 .189

Relationship with user .172* .052 .0004 .073 .172 .275
*: the centralized 95% credible interval does not contain 0

5.3 Drivers extraction

Using .05 as a cut-off level, we now extract drivers from the three regression models. For 
MLR, the criterion for a driver is its 95% confidence interval does not include zero, and for BU 
or BI this criterion becomes the centralized 95% credible interval does not include zero. After 
comparing various tables shown above, we conclude that BU and MLR have the same set of 
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drivers, which is subsumed in the set of drivers for BI. Table 10 summarizes this observation.
Thus, MLR and BU have the same power of detecting drivers in this empirical study. 

BI can usually find one or more interesting drivers than the other two models. After a careful 
examination of the results, we find that TTF factors with a p-value up to .1 in MLR can often 
become significant in BI. For example, relationship with user of task 1 has a p-value of .098 
in MLR. After using heuristics from MLR, BI has claimed this factor a driver. It seems that BI 
is delicate in detecting border line drivers. This is probably due to the fact that BI starts with a 
more precise estimate of the regression parameters.

Table 10: Drivers of performance for 3 insurance tasks using MLR, BU and BI

TTF factor
Task 1 Task 2 Task 3

MLR BU BI MLR BU BI MLR BU BI

Data quality X X X X X X X X X

Data locatability

Compatibility X X X X X

Timeliness X X X X X X X X X

System reliability X X X

Easy of use/Training X X X X X X

Relationship with user X X X X
X: factor is significant

5.4 Perturbing mean and variance in the heuristic priors

In the above study, we adopted estimated parameter values and standard errors from MLR 
to construct informative priors. It seems that these heuristics work pretty well: the Bayesian 
model is improved significantly and more interesting drivers can be detected. What happens if 
we use other means and variances in the priors? 

With a few more experiments, we find that: (1) if means and variances are set very close 
to the proposed heuristics, results about sample means and drivers for Bayesian regressions 
are very similar to those obtained in BI. However, DIC is increased a little bit; (2) the same 
statement can be said if means and variances are set very close to those in BU; and (3) if 
means and variances are set randomly, especially when they deviate a lot from the previous 
two situations, MCMC simulations may converge to models with a much higher DIC. With a 
wrong choice of means and variances in the priors, a Bayesian model can be substantially worse 
than BU, and thus should be rejected. Are there better choices of means and variances? This is 
potentially a difficult search problem that warrants advanced search algorithms.
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5.5 More evidence - A second empirical study

In order to check feasibility of the proposed method, we applied the heuristic Bayesian 
modeling approach to a second case of IS impact study, where data was collected independent 
of the first empirical study. The subject company in this case, termed company N, is an 
international insurance company in Taiwan and belongs to the Asia Pacific group of an 
international conglomerate headquartered in the United States. Company N offers many 
insurance products including individual life insurance and accidental insurance. To cope with 
the fast moving pace of the insurance industry, company N has started an early planning of 
adopting mobile technology in October 2000. The first mobile network named PDA mobile 
commerce system based on Palm OS and Windows CE was implemented in February 2001. The 
research model of this case is very similar to that of company G except the authorization factor 
is now a predictor variable. 

Company N had 18 branches and over 300 field offices in Taiwan. A random sampling of 
the company ś agents was made to participate in the survey study. We sent out 450 questionnaires 
and received 274. Excluding incomplete and inconsistent questionnaires, there were 238 final 
useful samples. Data was processed as before by following established procedures in Nunnally 
(1978). It was found that Cronbach ś  of our instrument ranged from .6347 to .9412, and each 
VIF in MLR was smaller than 10. For MLR, the adjusted R2 is .306, .430 and .373 for task 1, 
task 2 and task 3 regressions respectively. Since sample means in BU and BI are very close 
to estimated parameter values in MLR, all three models have the same adjusted R2 in each 
regression. With a cut-off level of .05, drivers located by MLR, BU and BI are marked in Table 
11. Drivers detected by MLR and BU are exactly the same, and they are subsumed by drivers in 
BI. In addition, we compute DIC for BU and BI with results listed in Table 12. A plausible (> 5) 
reduction of DIC from BU to BI has been detected. In summary, observation from this second 
empirical study is pretty much the same as that from the first empirical study.

BI has again turned border line factors into drivers. A careful examination of the results 
shows that TTF factors with a p–value smaller than .15 in MLR become significant in BI. For 
example, authorization of the task 2 regression has an estimated value of .106 with p = .144 in 
MLR; using heuristics from MLR, BI has obtained a centralized 95% credible interval of (.0097, 
.2006). Thus, the authorization factor is a driver in BI, but insignificant in MLR. This delicate 
feature of BI can sometimes introduce surprise drivers in a causal explanatory study. In the task 
3 regression, authorization has an estimated value of -.153 with p = .114. Since it is insignificant 
in MLR, most studies will simply discard its impact on performance. This parameter has a 
centralized 95% credible interval of (-.2825, -.02583) and a sample mean of -.1543 in BI. 
Therefore, the authorization factor is a driver for performing the task of providing tax and legal 
information services. This poses an interesting question since authorization negatively affects 
the task performance. Goodhue and Thompson (1995) found a similar situation in their study: 
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compatibility significantly and negatively impacts the task performance. After they added 
utilization as another independent variable in the research model, this phenomenon disappeared. 
The researchers concluded that when the technology is utilized and TTF evaluation is high, the 
performance will be improved. Since the task of providing tax and legal information services is 
generally considered a non-essential task by many insurance agents, we suspect that utilization 
was not assured for this task in company N. Previous studies have shown that voluntariness 
exists on a continuum (Moore and Benbasat, 1993), thus utilization may play an important role 
in the IS impact study of task 3. Company N can take a qualitative study to further examine this 
phenomenon.

Table 11: Drivers of performance for 3 insurance tasks in the second empirical study

TTF factor
Task 1 Task 2 Task 3

MLR BU BI MLR BU BI MLR BU BI
Data quality X X X X X X X X X

Data locatability X
Authorization X X
Compatibility X X X

Timeliness
System reliability

Easy of use/Training
Relationship with user X X X X

X: factor is significant.

Table 12: DIC for Bayesian regressions in the second empirical study

Task 1 Task 2 Task 3
BU 471.672 383.808 524.074
BI 463.271 375.407 515.689

BU - BI 8.401 8.401 8.385

6. CONCLUSIONS

In this research, a Bayesian regression is introduced for a causal explanatory study. 
Frequently, we are interested in finding what causes have significantly influenced a dependent 
variable. Drivers located in such a causal explanatory study can often play an important role 
in management decisions. Previous studies in empirical research often use MLR to conduct a 
regression analysis. MLR is fast and simple, but it lacks the flexibility to incorporate our prior 
belief into the building of a regression model. Results from MLR are also hard to interpret. 
On the other hand, Bayesian regressions have the flexibility to accommodate our prior belief, 
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and results from Bayesian regressions are intuitive. Even with these advantages, Bayesian 
regressions are still not popular in empirical research possibly due to two reasons: (1) some 
researchers view the selection of priors as a subjective work of arts; and (2) the computing 
resources associated with MCMC simulations are intensive. In this study, we answer the first 
issue by proposing a heuristic method to construct informative priors that are objective. The 
second issue is answered by today ś fast computing machines and efficient algorithms.

In order to demonstrate the Bayesian approach, two survey based technology to 
performance impact studies were conducted in different periods. Our research model is based 
on the task technology fit theory, a well-known theory in IS research that relates TTF degrees to 
user performance. In each case, three regression models (MLR, BU and BI) have been obtained 
to explain the impact of TTF on performance. The findings are the same in both empirical 
studies: (1) sample means from BU and BI are very close to estimated parameter values in MLR, 
and the adjusted R2 is virtually the same for all three models; (2) BI significantly improves BU 
and is the recommended final model in this research; and (3) BU and MLR detect the same set 
of drivers, while BI can usually detect one or more drivers. BI finds additional drivers by turning 
border line factors into drivers.

Based on the two empirical studies, we find that the inclusion of extra drivers in BI is 
progressive, not radical. The proposed BI approach does not change the way that a research 
model is established; a research model is still founded on a careful and thorough literature 
review. The BI approach does not change the means of data collection either. It just changes the 
way that data is analyzed by shifting from frequentist statistics to Bayesian statistics.

6.1 Implications for IS impact study

Lucas (1975) suggested that utilization is an appropriate surrogate for IS success when 
use is voluntary, and user evaluations of IS are appropriate when use is mandatory. Goodhue 
and Thompson (1995) generalized this idea to include the fit between task and technology. The 
researchers recommended to use TTF evaluations as a surrogate when utilization is assured, 
otherwise TTF alone is an incomplete surrogate for IS success. The delicacy of BI in detecting 
drivers can potentially provide valuable supports to the TTF theory in specific or IS impact 
study in general. In our empirical studies, BI found more drivers than MLR and BU. Actual 
managerial implications of this capability have to be examined case by case. For example, in 
our first empirical study, BI has claimed compatibility as a driver for all three tasks of insurance 
agents. Therefore, company G has to pay special attention to the overall database design in the 
Mobile Dr. Insurance system. Also, BI has reminded company G that users of its system are 
concerned with the fast changing business environments, because relationship with user is a 
driver for the task of recruiting new contracts. Thus, company G may want to understand the 
insurance industry in depth by learning from insurance consumers. In the second empirical 
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study, the negative impact of authorization on performance should prompt company N to study 
whether utilization of IS for the task of providing tax and legal services is assured. In this way, 
BI and TTF together can help design better diagnostics for IS problems.

6.2 Implications for Bayesian study

To the best of our knowledge, the novel application of the outputs from MLR to construct 
informative priors has not been used in any previous studies. Based on our empirical studies, it 
seems that these heuristics can yield a model that is significantly better than BU. Theoretically 
it would be interesting to know whether the proposed heuristic approach always leads to a 
significantly better model. Our empirical studies seem to confirm this, but a rigorous proof 
needs substantial knowledge and technique in Bayesian statistics. The result may also depend on 
a correct type specification for the prior distributions. In this study, selection of the (normal and 
gamma) distribution types is subjective. Overall, the Bayesian approach allows a user to quickly 
change distribution types of the priors, thus future studies may focus on how to smartly choose 
the distribution types in order to construct a much better Bayesian model.

6.3 Limitation of the research

The two empirical studies in this research were conducted for the insurance industry 
in Taiwan. Unlike the broad spectrum of tasks and technologies involved in Goodhue and 
Thompson (1995), tasks and technologies were clearly defined in our study. This may explain 
why our adjusted R2 is substantially higher than theirs. Direct generalizations of the managerial 
implications to other industries or countries may not be appropriate. However, we believe that 
the proposed heuristic Bayesian regression approach can be easily applied to other empirical 
studies and findings should be similar to the ones presented in this study.
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