
185

ID-based Tripartite Multiple Key Agreement

Protocol Facilitating Computer Auditing

and Transaction Refereeing

Hung-Yu Chien

Department of Information Management National Chi Nan University, Taiwan, R.O.C.

Abstract
Computer auditing and transaction refereeing require the system to keep genuine

records. However, it is difficult for an auditor or a referee to on-line audit the contents or
involve in the communication while the communication is kept confidential from others.
This problem has a promising solution, when Joux proposed the first efficient tripartite key
agreement protocol that enables three parties (that might include one referee) to establish a
secure session key. However, several published schemes are not secure. This paper
examines the weaknesses, and then proposes an ID-based tripartite multiple key agreement
protocol to raise the level of security and improve the efficiency. The security is proved in
a modified Bellare-Pointcheval-Rogaway model.

Key words: security, auditing, key agreement, bilinear pairing, elliptic curve.

186

 Joux

 Bellare-Pointcheval-Rogaway

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 187

1. INTRODUCTION
To audit computer data or referee a transaction, it is required that the system could

keep the genuine data and record the communication content. While in the insecure
Internet, the data and the communication content are usually encrypted to prevent an
adversary from hijacking or modifying the contents. Conventionally, the communication
contents are encrypted using the shared key between the two communicating parties. This
makes an auditor or a referee difficult to monitor or involve the secret communication.
Now the dilemma has a promising solution, since Joux [5] proposed the first efficient
tripartite key agreement protocol, where three parties can efficiently establish their session
key. Since then, the tripartite key agreement protocol from pairing has drawn the attention
of many researchers recently [1-6], not only because the three-party (or tripartite) case is
the most common size for electronic conferences but also because it can be used to provide
a range of services for two parties communicating. For example, a third party can be added
to chair, or referee a conversation for auditing, or data recovery purposes. However, Joux’s
scheme [5] cannot resist the man-in-the-middle attack [4]. Al-Riyma-Paterson’s
certificate-based protocols [4] consume a large amount of computing, communication and
storage to access and verify the public keys. Further, Shim [10] analyzed the insecurity of
Nalla-Reddy’s scheme [6], and Cheng et al. [9] pointed out the weaknesses of
Al-Riyma-Paterson’s scheme. Sun and Hsieh [7] pointed out the key compromise
impersonation attack on Shim’s scheme.

 The possible attacks and desirable properties of the tripartite key agreement protocol
consists of replay attack, impersonation attack, known key attack, man-in-the-middle
attack, insider attack, key-compromise impersonation attack, unknown key share attack,
forward secrecy, and TA-forward secrecy [1-6]. A protocol is vulnerable to the
key-compromise impersonation attack if the attacker who has compromised the private key
of one entity not only can impersonate the compromised entity but also other entities.
Forward secrecy means that compromise of the long-term secret keys of one entity or more
entities at some point in the future does not lead to the compromise of the communications
in the past. This can be further classified as partial forward secrecy and perfect forward

secrecy, where partial forward secrecy is the situation that only one entity’s long-term key
(or more entities but not all entities) is compromised and perfect forward secrecy is under
the situation that all the involved entities’ long-term keys (but not the Trusted Authority)
are compromised. Under the In ID-based systems, each user’s private key is known and
issued by Trusted Authorities (TA); therefore, compromise of TA’s private key leads to
compromise of all the private keys issued by TAs, too. TA forward secrecy requires that

188

even if the TA’s private key is compromised in the future does not lead to compromise of
the communications in the past.

The insider attack on a tripartite key agreement protocol means that one of the three
entities try to impersonate another one of the three entities. For example, B might try to
fool A that they and C are participating in a protocol run, while in fact C does not.
This attack could have serious consequences: for example, if C acts as an on-line escrow
agent, an auditor or a referee [5]. If B could impersonate C to A, then B can communicate
with or performing transactions with A; while A would do the transactions or
communications only if C (the referee) is monitoring the contents on-line. With no referee
involved, this might cause serious risk for A.

In this paper, we show the insider attack on Zhang-Liu-Kim’s ID-based scheme (the
ZLK scheme for short) [1, 3] and Shim’s certificate-based scheme [2], and propose a new
tripartite ID-based scheme that improves both security and efficiency. Our scheme is based
on the elliptic curves and the bilinear pairings. And, its security is proved secure in terms
of in-distinguishability [11] and resistance to the insider attack in a modified
Bellare-Pointcheval-Rogaway model [12].

Related works

Although recent progress has been made on the use of formal models to prove the
security of key exchange protocols, the area where formal model to prove the security of
tripartite case is required further work. Especially, there is no formal model that caters for
the insider attack and the key-compromise impersonation attack in the tripartite case, to
our best knowledge. Therefore, to prove the security against the insider attack and the
key-compromise impersonation attack in the tripartite case, we need to modify the existing
model.

Ai-Riyama and Paterson [4] had proved the security of one of their protocols in a
formal model; however, the model only allows passive adversary. The Canetti-Krawczyk
proof model [13] allows different components to be proved secure separately, and then
joins together to provide a secure key exchange. A protocol is first proved secure in their
AM model, and then authenticators are applied on the protocol to derive a secure protocol
in the UM model. This approach leads to a simpler, less error-prone proofs and the ability
to construct a large number of secure protocols from a small much smaller number of basic
secure components. Hichcock et al. [14] had modified the model for the tripartite case and
had designed secure tripartite protocols. However, the insider attacks and the
key-compromise impersonation attack are not considered in the proof since each entity
always follows the protocols and a session with a corrupted entity is not considered as
fresh for testing. Furthermore, the modular approach most of the time results in in-efficient

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 189

protocols, and heuristic optimization techniques are applied on the protocols to improve
the performance. But, these optimization processes are not proved. In 1995, Bellare and
Rogaway [11] analyzed a three-party server-based key distribution (3PKD) protocol, which
was referred to as BR 95 model [15]. The most recent revision of the BR95 model is the
BPR2000 model [12]. The partnership concept is used to capture the matching session
among oracles. Partnership in the BR95 model is defined using the notation of a partner
function, while that in the BPR2000 model is defined using the notation of session
identifier. Choo et al. [15] combined the BR95 model and the BPR2000 model to design
a secure 3PKD protocol. However, like the Canetti-Krawczyk model, every participating
entity (not the adversary) is assumed to be honest and the insider attack is not considered.
We, therefore, modify the BPR2000 model to prove the security of our protocol. Our
protocol is secure in terms of in-distingiusihability, resistance to key-compromise
impersonation attack and resistance to the insider attack relative to the Decisional Bilinear
Diffie-Hellman assumption (DBDH) and the secure Hess signature scheme.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries
of bilinear pairings and the BDH/DBDH assumptions. Section 3 examines the weaknesses
of the ZLK scheme, while Section 4 further points out the insider attack on Shim’s scheme.
Section 5 proposes our scheme. Section 6 proves the security. Section 7 analyzes its
performance, which is followed by our conclusions in Section 8.

2. BILINEAR PAIRINGS AND

THE BDH ASSUMPTION
 Let 1G be a cyclic additive group generated by P and 2G be a cyclic

multiplicative group. Both 1G and 2G have a prime order q . The discrete logarithm
problems (DLP) in both 1G and 2G are assumed to be hard. Let e : 1G x 1G 2G be a
bilinear pairing [5] that has the following properties:

1. Bilinear:),(),(),(2121 QPeQPeQPPe ⋅=+ and),(),(),(2121 QPeQPeQQPe ⋅=+ ;
2. Non-degenerate: There exists 1GP ∈ such that 1),(≠PPe ;
3. Computable: There exist efficient algorithms to compute),(QPe for all 1, GQP ∈ .
Bilinear Diffie-Hellman Problem (BDHP) for a bilinear pairing e : 1G x 1G 2G

is defined as follows: Given cPbPaPP ,,, 1G , compute abcPPe),(, where cba ,, are
random numbers from *

qZ . It is commonly believed that the BDHP problem is hard.
Decision Bilinear Diffie-Hellman assumption (DBDH): Let e : 1G x 1G 2G be a
bilinear pairing and q be the order of 1G and 2G . Let two probability distributions of
tuples of seven elements, 0Q and 1Q , be defined as :

190

},,:),(,,,,,,{ 210 qR
abc ZcbaPPecPbPaPPGGQ =

},,,:),(,,,,,,{ 211 qR
d ZdcbaPPecPbPaPPGGQ = .

Then the DBDH assumption states that 0Q and 1Q are computationally
indistinguishable.

3. WEAKNESSES of THE ZLK KEY

AGREEMENT SCHEME
The ZLK scheme has two versions: one is for sharing single key and the other is for

sharing eight keys among the three entities. Here, we review the multiple key case,
because one can easily derive the single key case from the multiple key version. The ZLK
scheme [1, 3] involves a Trusted Authority (TA) and users. The TA is responsible for the
set-up operation and the private key extraction operation.

Setup: TA sets up an additive group 1G of prime order q and a cyclic multiplicative
group 2G of the same order q . Let P be a generator of 1G , and e : 1G x 1G 2G a
bilinear mapping satisfying the conditions in Section 2. Define two cryptographic hash
functions qZH →*}1,0{: and 1

*
1 }1,0{: GH → . TA owns the system’s private key *

qZs ∈

and the system’s public key sPPpub = . TA publishes { 121 ,,,,,, HHPqPGG pub }.
Private key extraction: Let CBA and, be the three entities running the protocol. A

has his public key/private key as)(1 AA IDHQ = / AA sQS = , B has his public key/private
key as)(1 BB IDHQ = / BB sQS = , and C has his public key/private key as

)(1 CC IDHQ = / CC sQS = .
The ZLK protocol: A, B, and C run the protocol as follows.
1. A → B , C : ')',(,'', AAAAAAA aPSPPHTPaPaPP +=== , where 'and aa are two

random numbers chosen by A .
2. B → A , C : ')',(,'', BBBBBBB bPSPPHTPbPbPP +=== , where 'and bb are two

random numbers chosen by B .
3. C → B , A : ')',(,'', CCCCCCC cPSPPHTPcPcPP +=== , where 'and cc are two

random numbers chosen by C .
Now A verifies the received data by checking whether Equation (1) holds. If so,

he/she computes the eight session keys using Equation (2). Similarly, B / C verifies
Equation (3)/(5) and computes session keys using Equation (4)/(6), respectively.

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 191

)',()',(),)',()',((),(CCBBpubCCCBBBCB PPePPePQPPHQPPHePTTe +=+ (1)

'8'7'6'5

4321

)','(,),'(,)',(,),(

)','(,),'(,)',(,),(
a

CBA
a

CBA
a

CBA
a

CBA

a
CBA

a
CBA

a
CBA

a
cBA

PPeKPPeKPPeKPPeK

PPeKPPeKPPeKPPeK

====

====
 (2)

)',()',(),)',()',((),(CCAApubCCCAAACA PPePPePQPPHQPPHePTTe +=+ (3)

'8'7'6'5

4321

)','(,),'(,)',(,),(

)','(,),'(,)',(,),(
b

CAB
b

CAB
b

CAB
b

CAB

b
CAB

b
CAB

b
CAB

b
CAB

PPeKPPeKPPeKPPeK

PPeKPPeKPPeKPPeK

====

====
 (4)

)',()',(),)',()',((),(AABBpubAAABBBAB PPePPePQPPHQPPHePTTe +=+ (5)

'8'7'6'5

4321

)','(,),'(,)',(,),(

)','(,),'(,)',(,),(
c

ABC
c

ABC
c

ABC
c

ABC

c
ABC

c
ABC

c
ABC

c
ABC

PPeKPPeKPPeKPPeK

PPeKPPeKPPeKPPeK

====

====
 (6)

Security weaknesses of the ZLK multiple key agreement protocol

 Insider attack: An insider, say B, might just replay C’s messages to impersonate C
and shares session keys with A, if A does not log and check the past records. To log
and check the past records is not practical. However, even if the protocol really
checks the past records, an insider can still launch an insider attack as follows.
Assume A has sent his correct message as in the above. Now B , the inside
attacker, tries to fool A that C participates in the protocol run as follows.

1. B randomly chooses *,, qZwkc ∈ , and computes pubC kPP = , cPPC =' , CB QP =
and pubCCB PPPHP)',(' −= .

2. B computes pubBBBB PwkcSPPHT)()',(−+= and pubC wPT = .

3. B broadcasts { BBB TPP ,', }, and sends { CCC TPP ,', } as C ’s message.
After authenticating the broadcast messages using Equation (1), A will accept the

messages and will compute the session keys. We show this result as follows.
Theorem 1. A will accept B ’s forged messages (in the above plotted attack) after A

checking the verification equation (1).
Proof: To verify the authenticity, A will check Equation (1) as follows.

192

),(
),)(),((

),)(),((),)()',((
),)()',()',()',((

),)((),)',((),)',()',((
),()))',(-,(),)',()',((

)',()',(),)',()',((

'

'

PTTe

PwPPwkcSPPHe

PwPPwkcQPPHePPkcQPPHe

PPkcQPPHQPPHQPPHe

PPkcePQPPHePQPPHQPPHe

cPkPePPPHQePQPPHQPPHe

PPePPePQPPHQPPHe

CB

pubpubBBB

pubBBBpubBBB

pubCCCCCCBBB

pubpubCCCpubCCCBBB

pubpubCCCpubCCCBBB

CCBBpubCCCBBB

+=

+−+=

+−+=+=

+−+=

⋅−⋅+=

⋅⋅+=

⋅⋅+

So, Equation (1) holds and A believes that he has authenticated the messages. Furthermore,
the insider attacker B can share four common session keys with A . From Equation (2) and (4),
B can computes ,)',(),(2

A
a

CB
c

AB KPPePPe == ,)','(),'(4
A

a
CB

c
AB KPPePPe == =c

AB PPe)',(
,)',(6'

A
a

CB KPPe = and =c
AB PPe)','(8')','(A

a
CB KPPe = . That is, the insider B fools A into

accepting the forged messages and sharing four session keys with him, even though C does not
involve in the communication.

 Replay attack: The verification equations do not check the freshness of the
received messages. An attacker can, therefore, resend old messages of one entity
(for example, the referee) to fool the communicating party that the entity (the
referee) is actively participating the communication, even though he cannot derive
the new session keys. This attack might result in serious problems. We give an
example. An entity, say A, would communicate with B only if C (the referee) is
actively involved in the communication. B might replay C’s messages to fool A.

4. WEAKNESSES OF THE SHIM SCHEME

Even though Sun and Hsieh [7] have pointed out the key-compromise impersonation
attack on Shim’s scheme, the insider attack has not been noticed. Shim’s scheme is
certificated-based, where aPYA = , bPYB = , and cPYC = are the public keys of A, B,

and C, respectively. ACert BCert , and CCert are the corresponding certificates. A, B,

and C broadcasts the data in (7), and computes =AK
abca

CB PPabcxyzeYYaxe
CB PPeTTe),(),(),(),(= ,

=BK
b

CA YYbye
CA TTe),(),(

abcPPabcxyzePPe),(),(= , and ==
c

AB YYcze
ABC TTeK),(),(

abcPPabcxyzePPe),(),(, respectively.

A → B , C : AAA CertxYT ,= ;

B → A , C : BBB CertyYT ,= (7)

C → B , A : CCC CertzYT ,=
 Key-compromise impersonation attack: Sun and Hsieh [7] have showed the
key-compromise impersonation attack on Shim’s scheme.

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 193

 Insider attack: An insider, say A, now tries to masquerade as C to B as follows.
The symbol)(AC denotes that A masquerades as C. After broadcasting the data in
(8), A and B share the session key AK =

abca
CB PPabaxyzeYYaxe

CB PPeTTe),(),(),(),(= and
=BK

b
CA YYbye

CA TTe),(),(=
abcPPabaxyzePPe),(),(, where BA KK = . The insider attack

succeeds. Please notice that B wrongly believes that C is involved in the
communication.

A → B , C : AAA CertxYT ,= ;

B → A , C : BBB CertyYT ,= (8)

)(EC → B , A : CAC CertzYT ,=

 Replay attack: The Shim scheme does not check the freshness of the broadcast
data. It is, therefore, vulnerable to the replay attack as discussed in Section 3.

5. THE IMPROVED SCHEME
Based on Hess’s ID-based signature scheme [8] which was proved secure against

adaptively chosen messages attacks relative to the Diffie-Helleman problem in the random
model, we proposes an ID-based tripartite authenticated multiple key agreement protocol.
We additionally define the following hash functions, and introduce Hess’s ID-based
signature scheme as follows.

h1(): {0, 1}* x 2G *
qZ ; H1(): {0, 1}* *

qZ .

Hess’s ID-based signature scheme

Assume A be the signer. To sign a message m, A randomly chooses an integer k, computes
r = kPPe),(,),(1 rmhv = and kPvSu A += . Then, the signature is (m, v, u). To verify the
signature, the verifier checks whether the equation ,(1

?
mhv =)),(),(v

pubA PQePue − holds. If
so, he accepts the signature. The correctness of the equation can be checked as follows.

=−)),(),(,(1
v

pubA PQePuemh vrmhPkPemhPvSePkPvSemh AA ===−+),()),(,()),(),(,(111 .
Please notice that, for fixed signers, the values),(PPe and),(pubA PQe − can be
pre-computed, and then the computational cost for signature and verification is 2
exponentiation operations, 2 scalar multiplications and 1 pairing.

194

Improved ID-based tripartite multiple key agreement scheme

The proposed scheme adopts the same set-up and private key extraction as the ZLK
scheme, but the communication messages and the verification process are modified as
follows. In the communication, A, B, and C should include the session identifier (which
is defined as that in the BPR2000 model), the entities’ identities, ephemeral public keys in
the broadcast and in the calculation of their signatures. The inclusion of the entities’
identities, ephemeral public keys and the session identifier is to prevent the insider attack
among parallel sessions of the same group. In the following, sid denotes the session
identifier of the current session. There are two rounds where the entities broadcast their
ephemeral public keys the first run and the entities broadcast their confirmation (signatures)
on the session and ephemeral public keys in the second round.

1.1. A → B , C : sid, A, B, C, AP , 'AP

 A computes PaPaPP AA '', == , where Ak , 'and aa are random numbers
chosen by A . A sends (sid, A, B, C, AP , 'AP) to B and C.

1.2. B → A , C : sid, B, C, A, BP , 'BP

 B computes PbPbPP BB '', == , where Bk , 'and bb are random numbers.

1.3. C → B , A : sid, C, A, B, CP , 'CP

 C computes ''', PcPcPP CC == , where Ck , 'and cc are random numbers.

2.1. A → B , C : sid, Av , Au

 A computes Am =H1(sid, ',,',,',,,, CCBBAA PPPPPPCBA), Ak
A PPer),(= ,

),(1 AAA rmhv = and PkSvu AAAA += , where Ak is a random number chosen by
A . A sends (sid, Av , Au) to B and C.

2.2. B → A , C : sid, Bv , Bu

 B computes Bm =H1(sid, ',,',,',,,, CCBBAA PPPPPPCBA), Bk
B PPer),(= ,

),(1 BBB rmhv = and PkSvu BBBB += , where Bk is a random number.

2.3. C → B , A : sid, Cv , Cu

 C computes Cm =H1(sid, ',,',,',,,, CCBBAA PPPPPPCBA), Ck
C PPer),(= ,

),(1 CCC rmhv = and PkSvu CCCC += , where Ck is a random number.

To verify the data from B and C , A checks whether the following two equations
(9 & 10) holds. Likewise, B and C perform similar verifications. After authenticating the
messages from the other two entities, CBA and,, share the session keys specified in
Equations (11).

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 195

)),(),(),',,',,',,,,,((11

?
Bv

pubBBCCBBAAB PQePuePPPPPPCBAsidHhv = (9)

)),(),(),',',',,,,,((11

?
Cv

pubCCCCBBAAC PQePuePPPPPPCBAsidHhv = (10)

'8
,,

'7
,,

'6
,,

'5
,,

4
,,

3
,,

2
,,

1
,,

)','(,),'(

,)',(,),(,)','(

,),'(,)',(,),(

a
CBCBA

a
CBCBA

a
CBCBA

a
CBCBA

a
CBCBA

a
CBCBA

a
CBCBA

a
cBCBA

PPeKPPeK

PPeKPPeKPPeK

PPeKPPeKPPeK

==

===

===

 (11)

6. THE SECURITY

The model of the security

To our best knowledge, there is no formal model that captures the insider attack and
key-compromise impersonation attack in the tripartite key agreement protocol. To capture
the security, we should consider the in-distinguishability property [11-13], and the
resistance to key-compromise impersonation and the insider attack. All the models of
BR95 and BPR2000, a session with corrupted entities is not considered as fresh; therefore,
it cannot model the key-compromise impersonation and the insider attack. We, therefore,
prove the in-distinguishability in a modified model, and gain the advantage of insider
attack and key-compromise impersonation attack related to the advantage of forging
advantage of underlying signature scheme. Regarding the in-distinguishability, we adopt
the BPR2000 model with some modifications- (1) extension to the tripartite case, and (2)
extension for the Corrupt query.

The in-distinguishability

In the model, the adversary A is a probabilistic machine that controls all the
communications that take place between parties by interacting with a set of i

UUU 321 ,,Π
oracles (i

UUU 321 ,,Π is defined to be the ith instantiation of an entity 1U in a specific run,
and 2U and 3U are the entities with whom 1U wishes to establish a session key). The
pre-defined oracle queries are described informally as follows.

-Send(1U , 2U , 3U , i, m) allows A to send some message m of his choice to
i

UUU 321 ,,Π at will. i
UUU 321 ,,Π , upon receiving the query, will compute what the protocol

specification demands and return to A the response message and/or decision. If i
UUU 321 ,,Π

has either accepted with some session key or terminated, this will be made known to A .
Reveal(1U , 2U , 3U , i) query allows A to expose an old session key that has been

196

previously accepted. i
UUU 321 ,,Π , upon receiving the query and if it has accepted and holds

some session key, will send this session key back to A .
Corrupt(1U , EK) query allows A to corrupt the entity 1U at will, and thereby

learn the complete internal state of the entity. The corrupt query also allows A to
overwrite the long-term key of the corrupted entity to the value of his choice (i.e., EK).
This query can be used to model the real world scenarios of an insider co-operating with
the adversary or an insider who has been completely compromised by the adversary.

Test(1U , 2U , 3U , i) query: If i
UUU 321 ,,Π has accepted with some session key and is

being asked a Test(1U , 2U , 3U , i), then depending on a random bit b, A is given either
the actual session key or a session key drawn randomly from the session key distribution.

-In addition, the hashing functions ()1h and ()1H are modeled as three random
oracles with domains and ranges specified as the hashing functions.

The definition of security depends on the notations of partnership of oracles and
in-distinguishability. In the BPR2000 model, partnership of oracles is defined using SIDs
(session identifiers). The definition of partnership is used in the definition of security to
restrict the adversary’s Reveal and Corrupt queries to oracles that are not partners of the
oracles whose key the adversary is trying to guess.

Definition 1. Extension of BPR2000 Definition of Partnership: Three oracles
i

UUU 321 ,,Π , j
UUU 312 ,,Π and k

UUU 123 ,,Π are BPR2000 partners if, and only if, the three oracles
have accepted the same session key with the same SID, have agreed on the same set of
entities, and no other oracles besides i

UUU 321 ,,Π , j
UUU 312 ,,Π and k

UUU 123 ,,Π have accepted
with the same SID.

Definition of security in both BR95 and BPR2000 also depend on the notation of
freshness of the oracle to whom the Test query is sent. For i

UUU 321 ,,Π to be fresh, the
adversary in the BR95 model is not restricted from sending Corrupt queries to entities
apart from the entities of oracles i

UUU 321 ,,Π and its partner oracles j
UUU 312 ,,Π and k

UUU 123 ,,Π
(if such partners exist). We, therefore, adopt the definition of freshness of BR95 model.

Definition 2. Extension of BR95 Definition of Freshness: i
UUU 321 ,,Π is fresh (or it

holds a fresh session key) at the end of execution, if, and only if, oracle i
UUU 321 ,,Π has

accepted with or without a partner oracles j
UUU 312 ,,Π and k

UUU 123 ,,Π , all the oracles
i

UUU 321 ,,Π , j
UUU 312 ,,Π and k

UUU 123 ,,Π (if such an partner oracles exist) have not been sent a
Reveal query, and the entities 1U , 2U and 3U of oracles i

UUU 321 ,,Π , j
UUU 312 ,,Π and

k
UUU 123 ,,Π (if such partners exist) have not been sent a Corrupt query.

Security in both the BR95 and BPR2000 models is defined using the game G, played
between the adversary A and a collections of i

UUU zyx ,,Π oracles for players xU , yU

and zU },...,,{ 21 PNUUU and instances },...,1{ li ∈ . The adversary A runs the game
simulation G with setting as follows.

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 197

-Stage 1: A is able to send Send, Reveal and Corrupt queries in the simulation.
-Stage 2: At some point during G, A will choose a fresh session and send a Test

query to the fresh oracle associated with the test session. Depending on the randomly
chosen bit b, A is given either the actual session key or a session key drawn from the
session key distribution.

-Stage 3: A continues making any Send, Reveal and Corrupt oracle queries to its
choice.

-Stage 4: Eventually, A terminates the game simulation and output its guess bit b’.
Success of A in G is measured in terms of A ’s advantage in distinguishing whether

A receives the real key or a random value. Let the advantage function of A be denoted
by)(kAdv A , where k is the security parameter and)(kAdv A =2Pr[b=b’]-1.

Key-compromise impersonation

The participating entities (except the adversary) are always considered honest in all of
the BR95 model, the BPR2000 model and the Canetti-Krawczyk model, and a session with
any corrupted entity is not considered as fresh for testing. It, therefore, cannot capture the
key-compromise impersonation attack. However, we can gain the advantage of
key-compromise impersonation to that of forging a signature with the private key. In our
tripartite scheme, the adversary who has compromised 1U ’s private key and should try to
impersonate 2U to both 1U and 3U . And, the adversary should generate 2U ’s signature
on the fresh sid and ephemeral public keys. Therefore, his advantage of impersonation is
directly related to the advantage of forging 2U ’s signature.

Insider attack

For the tripartite case involving entities 1U , 2U and 3U , we consider the following
two scenarios are non-sense: (1) 1U and 2U co-operatively impersonate 3U to
themselves, and (2) 1U impersonates 2U and 3U simultaneously to himself. So, the
only meaningful attack scenarios are like that 1U impersonates 2U to 3U such that 3U

wrongly believes that itself, 1U and 2U will share the same key. In our protocol, 3U

will complete the protocol and compute the session key if only if 3U has validated the
second run message from 1U and 2U . Of course, 1U (the inside attacker) can generate
the valid message in the second run. But, to generate valid message on behalf of 2U , 1U

should generate the valid signature on the session-bound data (sid, 1U , 2U , 3U ,
',,',,',

332211 UUUUUU PPPPPP). So, the inside attacker 1U ’s advantage in impersonating 2U

is the same as that advantage of forging 2U ’s signature. Since Hess’s signature is secure
against adaptively chosen message attack and 3U ’s ephemeral public keys

3UP and '
3UP

are random and fresh, the advantage is negligible. The detailed advantage is given in the

198

proof of Theorem 1. Now we are ready to define the security.
Definition 3 (Secure tripartite key agreement protocol): A tripartite key agreement

protocol is secure in our model if the following thee requirements are satisfied:
1. Validity: When the protocol is run among three oracles in the absence of a

malicious adversary, the three oracles accept the same key.
2. Indistinguishability: For all probabilistic, polynomial-time adversaries A ,

)(kAdv A is negligible.
3. Security against insider impersonation and key-compromise impersonation:

Even an insider (and a key-compromise impersonator) cannot impersonate another
entity to the third entity and complete the session run with the third one.

6.2 Security proof

Theorem 1. The proposed tripartite key agreement protocol is secure in the sense of
Definition 3 if the Hess’s digital signature scheme is secure against the adaptively chosen
message attack and the DBDH is hard.

Proof:

1. The validity is straightforward due to our protocol specification.
2.The security against insider impersonation (and the key-compromise impersonation)

is equivalent to the security of the Hess’s signature scheme. This has been
discussed in Section 6.1, and the detailed advantage will be given in proving the
in-distinguishability.

3. So, we concentrate on the in-distinguishability. The general notation of this
in-distinguishable proof is to assume an adversary A who can gain a
non-negligible advantage in distinguishing the test key in the game, and use A to
construct a distinguisher D that distinguishes between the distributions 0Q and

1Q , with non-negligible probability.

To easier present the reduction, we examine the case of single key agreement (that is,
each entity just sends one ephemeral public key and the session key is abcPPe),(). The
result can be easily extended to the multiple key agreement case. The proof can be divided
into two cases since the adversary A can either gain its advantage against the protocol by
forging a participating entity’s signature or gain its advantage against the protocol without
forging a participating entity’s signature.

Case 1. A gains its advantage by forging a participating entity’s signature.
We denote by)](Pr[kSuccSig the probability of a successful signature forgery under

adaptively chosen message attack, and define an event SigForgery to be an event that at
some point in the game A asks a Send(1U , 2U , 3U , i,),,(,, 11 iUiU uvsid) query to some

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 199

partner oracles j
UUU 312 ,,Π or k

UUU 123 ,,Π such that the oracle accept, but the signature value
(iUiU uv ,, 11

,) used in the query was not previously output by a fresh oracle. We construct an
adaptive Signature forger F against the message authentication scheme using A in the
following game FG .

-Stage 1: F is provided permanent access to the Signature oracle UO associated with
its private key of U throughout the game FG .

F randomly chooses an entity },...,{ 1 PNUUU ∈ . U is F’s guess at which A will
choose for the SigForgery.
F generates a list of public key/private key pairs for the entities }{\},...,{ 1 UUU

PN .
-Stage 2: F runs A and answers all queries from A . This can be easily done since F

can respond to all oracle queries as required using the keys chosen in Stage 1 and UO . F

also records all the signatures it receives from UO . If, during the execution, A make an

oracle query that includes a forged signature for U , then F outputs the signature forgery
as its own and halts. Otherwise, F halts as A halts.

Since U is randomly chosen from the PN entities, the probability that U is the
entity for whom A generates a forgery is at least 1/ PN . Therefore, the success probability
of F is P

F NkSigForgerykSucc /)](Pr[)](Pr[≥ . Hence,
)](Pr[)](Pr[kSigForgerykSuccN F

P ≥⋅ . (12)
Since Hess’s signature is secure against adaptively chosen message attack and the

PN is polynomial in k, the)](Pr[kSigForgery is negligible.
Case 2. A gains its advantage without forging a participating entity’s signature.
This part assumes that A gains its advantage without forging a participating entity’s

signature. We use A to construct a distinguisher D for the DBDH problem. The input to
D is denoted by (δγβα ,,,,,,, 21 ePGG) and is chosen from 0Q and 1Q (each with
probability 1/2). Let l be an upper bound on the number of sessions invoked by A
among any three entities. The objective of D is to correctly guess the challenge θ in the
game simulation DBDHG . The distinguisher D uses the adversary A as a subroutine and
proceeds as follows.

-Stage 1: D is given the challenge (δγβα ,,,,,,, 21 ePGG) that is chosen from 0Q and

1Q (each with probability 1/2).

-Stage 2: D randomly chooses his target entities A, B, C },...,{ 1 PNUU∈ , and randomly
chooses a target session },...,2,1{ lu ∈ . He chooses a list of public key/private key pair for
all entities },...,{ 1 PNUU . Define l

N
cN p ⋅=)

3
(.

- Stage 3: D runs A with public parameters (ePGG ,,, 21) to determine his
guessing bit θ ’. During the simulation, D should answer A ’s queries and maintain the
Send-list as follows.

200

Send(1U , 2U , 3U , i,m) query:

1. If (({ 1U , 2U , 3U } ≠ {A, B, C}) OR (ui ≠)) AND m=*, then randomly chooses an
integer *

qZw∈ and outputs the outgoing message as (i, 1U , 2U , 3U , wP). D

also records the data (i, 1U , 2U , 3U , (w, wP)) in his send-list.
2. If the set ({ 1U , 2U , 3U }={A, B, C}) AND m=* AND u=i, then

a. If 1U = A, output the outgoing message as (i, 1U , 2U , 3U ,α).
b. If 1U = B, output the outgoing message as (i, 1U , 2U , 3U , β).
c. If 1U = C, output the outgoing message as (i, 1U , 2U , 3U ,γ).

3. If m has the form (PwPwPw 321 ,,), use 1U ’s corresponding private key to generate the
signature on (i, 1U , 2U , 3U , PwPwPw 321 ,,) and output the signature (

1Uv ,
1Uu).

4. If m has the form (
1Uv ,

1Uu), then use 1U ’s public key to verify the signature. If
the verification succeeds, then the signature must be previously generated by D. D

outputs decision = “accept”; otherwise, outputs “reject”.
5. In all other cases the input to the Send query is invalid, so D randomly chooses a

bit θ ’ as its response and hand it to the challenger.

Reveal(1U , 2U , 3U , i) query:

1. { 1U , 2U , 3U }={A, B, C}AND (i
UUU 321 ,,Π has accepted) AND (it forms the target

session), then D randomly chooses a bit θ ’ as its response and hand it to the
challenger.

2. If this is not the target session AND (i
UUU 321 ,,Π has accepted), then compute and

output the session key sk (compute the sk using the data in the Send-list).
 In all other cases the input to the Revel query is invalid, so D randomly chooses a

bit θ ’ as its response and hand it to the challenger.

Corrupt(U , K) query:

If U ∈ {A, B, C}, then D randomly chooses a bit θ ’ as its response and hand it to
the challenger.

If U ∈ },...,{ 1 PNUU \{A, B, C}, then D hands in all internal of U to A , and updates
U ’s key pair as K.

Test(1U , 2U , 3U , i) query:

If { 1U , 2U , 3U }={A, B, C}AND (this is the target session) AND (the last flow that
i

UUU 321 ,,Π received had the form (
1Uv ,

1Uu) is a valid signature on (i, 1U , 2U , 3U ,
γβα ,,), then D will answer the query with δ , else D randomly chooses a bit θ ’ as its

response and hand it to the challenger. After making a Test query and getting an answer δ
from D, A continues interacting with the protocol an eventually outputs a guess bit b’. D

then outputs his guess bit θ ’=b’ as its response to the challenger.

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 201

The probability that A chooses the target session as the Test session is 1/(N) since
D randomly chooses the entities (A, B, C) and the session u. It is easy to verify that when
the target session and the Test session are different or the target session is not fresh, D

outputs a random bit θ ’, so the probability of success is 1/2. For the case the Test session
is the target session, then the probability of D’s success is the same as A . Hence, D’s
success probability is as follows.

N
SigForgerykAdv

N
N

N
SigForgerybb

N
N

kSucc

A

DBDH

2
1)|)((

2
1

]|'Pr[
2

1)](Pr[

+¬+−=

¬=+−=

N
SigForgerykAdv

kSucc
A

DBDH)|)((1)](Pr[2 ¬=−

)|)(()(SigForgerykAdvkAdvN ADBDH ¬=⋅ (13)
The N is polynomial in k, so)|)((SigForgerykAdv A ¬ is negligible if the DBDH is

hard. From (12) an (13), we have proved the in-distinguishability and the theorem.

7. PERFORMANCE ANALYSIS
Table 1 summarizes the comparisons of our schemes and its counterparts. Among the

operations, the pairing operation is the most expensive. From the comparisons, our scheme
demands less pairing operations. Please also notice that our scheme can be easily extended
to share only one session key by sending one ephemeral public value per entity or to share
n3 keys by sending n ephemeral public values per entity. While in the ZLK scheme, it is
not known whether it is feasible to extend to more than eight keys.

Regarding the security, both the ZLK scheme and the Shim’s scheme is vulnerable to
the insider attack, and Shim’s scheme is further vulnerable to key-compromise
impersonation attack. Other considered security properties include forward secrecy and TA

forward secrecy. Our scheme and the ZLK scheme are ID-based, while the Shim’s scheme
is not. All the three schemes are secure regarding the forward secrecy property.

From the table, we can see that our scheme is more computational efficient than the
ZLK scheme and Shim’s scheme, in addition to its security robustness and scalability. .

8. CONCLUSIONS
This paper has showed the security weaknesses of the Zhang-Liu-Kim tripartite key

agreement protocol and the Shim tripartite schemes. We also have proposed an ID-based
tripartite multiple key agreement protocol to raise security level and improve its efficiency

202

and scalability. The security of the proposed scheme is proved in the modified BPR2000
model relative to the Decisional Bilinear Diffie-Hellman problem and the security of the
Hess’ signature scheme.

Table 1. Comparisons of tripartite key agreement protocols

ID-ZLK ID-MKEY-ZLK Shim Our scheme

Number of session keys 1 8 1 1, 8, …, n3

Insider impersonation Y Y Y N

Key compromise
impersonation

N N Y N

Forward secrecy Y Y Y Y

KGC forward secrecy Y Y Y Y

Number of round 1 1 1 2

Computation of one party

5 pairE

5 scalarE

1 addE

3 expF

(8 keys)

8 pairE

6 scalarE

3 addE

8 expF

5 pairE

5 scalarE

2 addE

1 expF

(1 key)

3 pairE

3 scalarE

1 addE

4 expF

(8 keys)

6 pairE

4 scalarE

1 addE

11 expF

(n3

keys)

n2+2 pairE

n+2 scalarE

1 addE

n3+3 expF

** pairE denotes one pairing operation on the elliptic curves (E); scalarE denotes one
scalar multiplication on the curves; addE denote one elliptic curve point addition; expF

denotes one exponentiation on 2G .

References
1. Liu, S., Zhang, F., Chen, K. ID-based tripartite key agreement protocol with pairing.

In Proc. IEEE ISIT 2003, Yokohama, Japan, 2003, pp. 136.
2. Shim, K. Efficient one round tripartite authenticated key agreement protocol from

Weil pairing. Electron. Lett., 2003, 39(2): 208-209.
3. Zhang, F., Liu, S., and Kim, K. ID-based one-round authenticated tripartite key

agreement protocol with pairings. Cryptology eprint Archive, Report 2002/122.
4. Al-Riyami, S. S. and Paterson, K. G., “Tripartite Authenticated Key Agreement

Protocols from Pairings”, IMA Conference on Cryptography and Coding, LNCS 2898,
Springer-Verlag (2003), pp. 332-359.

5. Joux, A. A one round protocol for tripartite Diffie-Hellman. ANTS IV, LNCS1838,
Spring-Verlag, 2000, pp. 385-394.

6. Nalla, D. and Reddy, K.C. ID-based tripartite authenticated key agreement protocols
from pairings. Cryptology eprint Archive, Report 2003/004.

ID-based Tripartite Multiple Key Agreement Protocol Facilitating Computer Auditing and Transaction Refereeing 203

7. Sun, H.-M. and Hsieh, B.-T., “Security Analysis of Shim's Authenticated Key
Agreement Protocols from Pairings", Cryptology ePrint Archive, Report 2003/113.

8. Hess, F., “Efficient identity based signature schemes based on pairings”, SAC 2002,
LNCS2595, pp. 310-324, Springer-Verlag, 2002.

9. Cheng, Z., Vasiu, L., and Comley, R., “Pairing-based one-round tripartite key
agreement protocols”, Cryptology ePrint Archive, Report 2004/079, available at
http://eprint.iacr.org/2004/079/.

10. Shim, K. “A man-in-the-middle attack on Nalla-Reddy’s ID-based tripartite
authenticated key agreement protocol,” Cryptology ePrint Archive, Report 2003/115.

11. Bellare, M., Rogaway, P., “Provably secure session key distribution: The three party
case”, in 27th ACM Symposium on the Theory of Computing, pp. 57-66, ACM press,
1995.

12. Bellare, M., Pointcheval, D., and Rogaway, P., “Authenticated key exchange secure
against dictionary attacks”, Eurocrypt 2000, LNCS 1807, Springer, pp. 139-155,
2000.

13. Canetti, R., Krawczyk, H., “Analysis of key-exchange protocols and their use for
building secure channels”, in Eurocrypt 2001, LNCS 2045, pp. 451-472, Springer,
2001.

14. Hitchcock, Y., Boyd, C., Nieto, J.M.G., “Tripartite key exchange in the
Canetti-Krawczyk proof model”, in 5th International Conference on Cryptology in
India - Indocrypt 2004. Springer-Verlag.

15. Choo, K.K.R., Boyd, C., Hitchcock, Y., Greg, M., “On session identifiers in provably
secure protocols”, in Fourth Conference on Security in Communication Networks -
SCN 2004, LNCS 3352, pp. 352-267, Springer-Verlag.

