
Extended Self-Organizing Map on Transactional Data 185

Extended Self-Organizing Map on Transactional

Data

Wen-Chung Liao

Department of Information Management,

National Yunlin University of Science and Technology

Chung-Chian Hsu*

Department of Information Management,

National Yunlin University of Science and Technology

Abstract

In many application domains, transactions are the records of personal activities.

Transactions always reveal personal behavior customs, so clustering the transactional

data can divide individuals into different segments. Transactional data are often

accompanied with a concept hierarchy, which defines the relevancy among all of the

possible items in transactional data. However, most of clustering methods in

transactional data ignore the existing of the concept hierarchy. Owing to the lack of the

relevancy provided by the concept hierarchy, clustering algorithms tend to separate

some similar patterns into different clusters. Besides, their clustering results are not easy

to be viewed by users. The purpose of this study is to propose an extended SOM model

which can handle transactional data accompanied with a concept hierarchy. The new

SOM model is named as SetSOM. It can project the transactional data into a

two-dimensional map; in the meanwhile, the topological order of the transactional data

can be preserved and visualized in the 2-D map. Experiments on synthetic and real

datasets were conducted, and the results demonstrated the SetSOM outperforms other

SOM models in execution time, and the qualities of visualization, mapping and

clustering.

Keywords: transactional data, self-organizing map, concept hierarchy, distance

function on transactions, concept tree

* Corresponding author. Email: hsucc@yuntech.edu.tw

2011/03/19 received; 2011/08/17 revised; 2011/10/25 accepted

186 資訊管理學報 第十九卷 第一期

延伸自組映射圖探勘交易型資料

廖文忠

國立雲林科技大學資訊管理系

許中川*

國立雲林科技大學資訊管理系

摘要

在許多應用領域，交易紀錄反映個人行為上的偏好或習慣，若將交易紀錄適

當分群，即可將不同行為類型的個人分到不同群組。交易型資料通常有概念階層

伴隨，概念階層反映所有可能交易項目之間的相關性，然而，概念階層卻被大多

數的分群演算法忽略，因此，易將相似度高的交易資料分屬不同群組；除此，分

群結果通常不易被使用者觀看。本論文目的在延伸自組映射圖探勘具概念階層的

交易資料，我們稱之為 SetSOM；SetSOM可將交易資料映射至二維平面上，同時

保有交易資料在其資料空間上的拓樸關係且可被觀看。利用人造資料及實際蒐集

的交易型資料，進行實驗發現，SetSOM無論在執行時間、視覺觀看品質、映射品

質、及分群品質均高於其他自組映射圖的表現，包括 SCM及 SOM。

關鍵詞：交易型資料，自組映射圖，概念階層，交易型資料距離函數，概念樹。

* 本文通訊作者。電子郵件信箱：hsucc@yuntech.edu.tw

2011/03/19投稿；2011/08/17修訂；2011/10/25

Extended Self-Organizing Map on Transactional Data 187

1. Introduction

Transactional data are common in many application domains such as marketing,

finance, e-commerce, biology, medicine, etc. A typical example of transactional data is

the market basket data, where each basket (or transaction) is a set of different items

purchased by a customer in a transaction. Web pages browsed by visitors in a web site,

books borrowed by students from their college library, and symptoms emerged in

patients are another different examples. It is valuable to cluster transactional data into

different groups. For example, the market basket data always reveal their customers’

shopping behaviors and personal favorites. Clustering the market basket data can

separate the customers into different segments, so managers of the shopping store can

adopt different marketing strategies for the different segments of the customers to

maximize their profits.

In many applications, transactional data are accompanied with a concept hierarchy

or a taxonomy tree. Product catalogs of shopping stores, Web site structures, book

categories of libraries etc. are examples of concept hierarchies. Concept hierarchies are

tree structures (Han & Kamber 2001). All of the possible items in transactional data

form the leaf nodes of the concept hierarchy. The non-leaf nodes are the categories (or

concepts) of all the possible items. The relevancy among all of the possible items in

transactional data is defined in the concept hierarchy. Items in the same category are

more relevant than those of items in different ones. For example, in a shopping mall,

apple juices are more relevant to grape juices than apples, since apple juices and grapes

juices belong to the same juice category and apples are in the fruit category. If the apple

juices are in shortage on the shelf, normally, customers tend to take a grape juice rather

than an apple.

So far, many transactional data clustering methods had been developed and have

well clustering quality (Guha et al. 2000; Hua et al. 2009; Wang et al. 1999; Yang et al.

2002). However, most of these clustering methods ignore the existing of concept

hierarchies. The relevancy between individual items is never considered in most of the

methods. Most of them put the transactions which have more items in common into the

same cluster. The important information between the items is lost. It may cause that the

transactions whose items are different but relevant are considered as different kinds of

patterns. For example, if we have two transactions t1={apple juice, orange, coke} and

t2={pesi, grape juice, apple} that come from a shopping mall. Most of the clustering

188 資訊管理學報 第十九卷 第一期

methods, like LargeItems (Wang et al. 1999), Clope (Yang et al. 2002), Scale (Hua et al.

2009), would not put these two transactions into the same cluster, since these two

transactions do not have any items in common. Put them into the same cluster would

reduce the number of large items (Wang et al. 1999), slope (Yang et al. 2002), or density

(Hua et al. 2009) of the cluster. It is easy to understand that these two transactions are

similar since their items are highly relevant.

Moreover, most of the clustering methods have difficulty in visualizing their

clustering results, so the structure of the clusters can not be inspected by users easily.

The self-organizing map (SOM), proposed by Kohonen (1982, 1995), has high quality

in projecting high dimensional numerical data into a low dimensional space, typically a

two-dimensional map, such that the projecting result can be viewed. Thanks to its well

visualization property, the SOM has been applied to many related applications

(Kohonen et al. 1996, 2000; Yeh & Chang 2006), including data clustering analysis

(Chen et al. 2000).

Recently, some SOM models like the SCM (Flanagan 2003; Himberg et al. 2003),

the TCSOM (He et al. 2005) had been developed to handle transactional data, but they

do not consider the existing of concepts hierarchies too. On another side, some SOM

models, like the GSOM (Hsu 2006) and the GViSOM (Hsu et al. 2006) were proposed

to handle mixed-type data. Although they take concept hierarchies, which are associated

with each categorical feature, into account, they can not apply to transactional data well

since their data objects are thought as fixed dimensional vectors, not sets.

In this paper, an extended SOM model which can handle set-type transactional data

accompanied with a concept hierarchy is proposed. We named it as SetSOM. SetSOM

can project the transactional data into a two-dimensional map; in the meanwhile, the

topological order of the transactional data can be preserved and visualized in the 2-D

map.

This study has the following contributions. The first one is the SetSOM extends the

application scope of the conventional SOM to manage the transactional data with a

concept hierarchy. The second is a distance function is given to measure the distances

between transactions such that the relevancy of the items takes into consideration. The

third is the data structure of the transactional data with a concept hierarchy can be

precisely inspected by a visualization map.

The rest of this paper is organized as follows. In section 2, the SOM and some

extended models are reviewed. Section 3 gives the methodology of the SetSOM.

Experiments are reported in section 4. Conclusions and future works are described in

Extended Self-Organizing Map on Transactional Data 189

section 5.

2. Literature review

2.1 Self-organizing map

The self-organizing map (SOM) is an unsupervised neural network (Kohonen 1982,

2001). It can project high dimensional data objects into a lattice of neurons, typically

arranged on a 2-D map; in the meanwhile, the topological order among the data objects

in their data space can be preserved on the 2-D map. The lattice can be rectangular or

hexagonal. Each neuron has its own reference vector, which belongs to the same space

of the data objects. After learning from input patterns, the reference vectors of the

neurons will reflect the distribution of the data objects in their own data space.

The neurons learn from the input patterns randomly and iteratively. In the

traditional SOM, there are two key steps whenever an input pattern is randomly drawn

from a dataset. The first one is to find the best matching unit (BMU) from all of the

neurons on the map. If x is an input pattern, then the best matching unit c is found as

follows.

 ||||minarg
i

i

mxc −= , (1)

where mi is the reference vector of the neuron i. That is, among all the neurons, c is the

one which has minimal distance between its reference vector and x.

The second key step is to adjust the reference vectors of the neurons which are in

the neighborhood of the BMU. Let i be a neuron which is in the neighborhood of c. The

reference vector mi of the neuron i is adjusted by the following equation.

)]()()[()()1(smsxshsmsm
iciii

−+=+ , (2)

where hci(s) is the neighborhood function, 0<hci(s)<1, and s denotes the current time.

The Gaussian kernel is widely used in the neighborhood function hci(s) as follows.

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−⋅=

)(2
exp)()(

2

2

s

rr
ssh

ic

ci

σ

α , (3)

190 資訊管理學報 第十九卷 第一期

where)(sα is the learning rate, 0<)(sα <1,)(sσ is the width of the Gaussian kernel, and

rc and ri are the locations of the neurons c and i on the map, respectively. Both

)(sα and)(sσ are monotonically decreasing with time s. From equation (2), we have

)()()()](1[)1(sxshsmshsm
ciicii

+−=+ (4)

That is, the newly reference vector of the neuron i is a linear combination of mi(s) and

x(s). Since [1-hci(s)]+ hci(s)=1, mi(s+1) will be the point on the line segment between

mi(s) and x(s) as depicted in Fig. 1.

Figure 1：Adaptation of reference vector

Let .)()(smsxd
i

−= Then the reference vector of the neuron i after adaptation, i.e.,

mi(s+1), must be the vector that satisfies the following two equations:

 (1) () ()
i i ci

m s m s h s d+ − = ⋅ , (5)

 (1) () [1 ()]
i ci

m s x s h s d+ − = − ⋅ . (6)

That is, after adaptation, the reference vector mi is more similar and closer to x.

2.2 SOM on non-vector data

The SOM is suitable for the n-dimensional vector dataset. But Kohonen (1996) had

shown that any non-vector dataset with a defined distance measure or similarity can be

mapped by the SOM. It is based on the use of batch-SOM training and the median

associated with each neuron (Kohonen & Somervuo 1998, 2002). Afterward the online

SOM algorithm for non-vector data such as symbol strings (Somervuo 2004), graphs

(Günter & Bunke 2002), transactions (Flanagan 2003; Himberg et al. 2003; He et al.

2005), time series (Hammer et al. 2005), and so on had been developed.

The Symbol String Clustering Map (SCM) is an unsupervised clustering method

for symbol string data (Flanagan 2003; Himberg et al. 2003). Symbol strings are

composed of symbols. Like the SOM, the SCM has a lattice of nodes on a 2-D map.

Each node of the SCM is associated with a symbol string and a weight vector. Each

mi(s)
mi(s+1)

x(s)

d

hci*d (1-hci)*d

Extended Self-Organizing Map on Transactional Data 191

symbol of the node string is associated with one coefficient in the weight vector.

Whenever an input symbol string is drawn from the dataset and fed to the SCM, the

winner node, which has the maximum activation value, is found. Next, an adaptation

step is followed. For each node, both of its node string and weight vector are adjusted

based on the input symbol string, the winner node, the values of the learning rate and

the kernel function at time t. As a result, the non-null nodes form the clusters and are

separated by the null nodes on the map. Transactions are symbol strings if their items

are considered as symbols, but SCM does not consider the concept hierarchy.

In the paper of Günter and Bunke (2002), graphs can be clustered by the SOM.

Distance between two graph g1 and g2 is defined as the edit distance, which is the

minimal cost when a sequence of edit operations including substitution, deletion, and

insertion are applied to g1 such that the edited graph g1 is isomorphic to the graph g2.

Moreover, a weighted mean of g1 and g2 is defined as a graph g such that, for some α

with 0≤α≤d(g1, g2), the following two equations hold:

 d(g1, g)= α, (7)

 d(g1, g2)= α+d(g, g2). (8)

In this SOM model, graphs are directly used as the neuron’s model. Thus,

whenever an input pattern, a graph x, chosen from the dataset, the BMU can be found

among all of the neurons by the edit distance measure; and the graphs of the neurons

around the neighborhood of the BMU can be adjusted via the above concept of the

weighted mean. If y is the graph of a neuron in the neighborhood of the BMU and γ is

the value of the neighborhood function, then the new graph of y after adjusting is

determined by the following equations:

 d(y, ynew)= γd(x, y), (9)

 d(x, y)= d(x, ynew)+d(ynew , y). (10)

That is, the graph ynew is the weighted mean of x and y. These two equations follow the

equations (7) and (8) directly, and they are the same as the equations (5) and (6) in the

SOM. This SOM model is used to cluster characters.

A transaction can be considered as an 1-level tree if all its items are treated as the

leaf nodes. Thus the above SOM model can be applied to transactional data. However,

bias could occur when the non-normalized edit distance is applied to transactions.

192 資訊管理學報 第十九卷 第一期

3. Methodology

In this section, an extended SOM model which can handle transactional data with a

concept hierarchy is proposed. We call it SetSOM. Before the proposed SetSOM, a

distance function defined on transactions and three tree operators are given.

3.1 Preliminaries

Let I={i1, i2, …, iM} be a set of M possible items. Let D be a transactional dataset.

That is, D is a collection of transactions. We assume the size of D is N. Suppose t is a

transaction of D. Then t is a set of distinct items of I, that is, t is a subset of I.

Let H be a concept hierarchy of I. It means that H must be a rooted and labeled tree

with all items of I as its leaves. The non-leaf nodes of H act as taxonomic roles of the

items in I. The top-level non-leaf nodes are the main categories of I, and the higher level

ones are those of subcategories of I. Hence we call the leaves in H as item nodes and

the non-leaf nodes as category nodes. For convenience sake, the root node of H is

labeled as r, and every node in H is considered to have a unique label. Moreover, the

left-to-right order among the siblings of any category node in H is significant. A three

levels concept hierarchy is depicted in Fig. 2.

Figure 2： A three levels concept hierarchy. The nodes x, y, and z are the main

categories; the nodes xis, yis, and zis are the subcategories; the ijs are the

items.

Let T be a subgraph of H. All the nodes and the edges in T must be in H. If T is a

tree with the same root of H, T is called a concept tree which comes from H. T is

ordered and labeled too. If a is a node of T, a value is given and called the growth value

of a, denoted by)(ag
T

. The growth value is greater than zero and not greater than one.

When 1)(=ag
T

, a is said to be fully grown in T. When 1)(0 << ag
T

, a is partially

grown in T. In any concept tree T, only fully grown category nodes can have their child

…

z3 z2 y3 y2 x2

r

y

i1 i36 i5 i9 i13 i17 i21 i2 i29 i33

z1 y1 x1

...

z

x3

x

… … … … … … …

Extended Self-Organizing Map on Transactional Data 193

nodes. If a is a category node in T, the child nodes of a in T must be also child nodes of

a in H. If T contains item nodes of H, these nodes must be leaves of T. The weight of T,

denoted by |T|, is the total growth values of all the nodes in T, that is,)(|| agT
TTa∈

Σ= .

Based on the concept hierarchy in Fig. 2, an example of concept tree is shown in Fig.

3(a). The nodes x, y, and y2 are fully grown, and the nodes x1 and i17 are partially grown.

If all the item nodes of T are fully grown and exactly equal to those of the items in

transaction t, we call T the corresponding transaction tree of t. If we have a transaction

t={i1, i4, i17, i21}, then a transaction tree T with |T|=10, which corresponds to t, is

depicted in Fig. 3(b).

Figure 3： Examples of a concept tree and a transaction tree. (a) is a concept tree; (b) is

a transaction tree T corresponding to a transaction t={i1, i4, i17, i21} with

|T|=10.

A concept tree, like the example in Fig. 3(a), can be represented as a class of

transactions. Any transaction which has the item i17 and the items belonging to the

subcategories x1 or y2 has a high possibility in the class of this concept tree. Besides, the

transactions in the above class have a higher possibility in containing the items which

belong to the subcategory y2 and a less possibility in containing the items which belong

to the subcategory x1, since y2 is more fully grown than x1 in this concept tree. Concept

trees will be used as the prototypes of neurons in our SOM model.

3.2 Distance between transactions

Before we have a distance function defined on transactions, a distance function

defined on concept trees is first given. Here are some notations. For any tree T, ΨT(a|b)

is denoted as a subtree rooted at the node a with b as its parent node, if no ambiguity, b

can be ignored, and πT(b) is the set of all the child nodes of b. Based on the Jaccard’s

coefficient (Lampinen and Oja 1992), a distance function of any two trees, T and U,

with a common root node r is given as follows.

i21 i17 i4 i1

r r

x1

x y

y2

i17

x y

y3 y2 x1

(a) (b)

194 資訊管理學報 第十九卷 第一期

)Wdiff()(Wintersect

)Wdiff(
)(dist

T, UT, U

T, U
T, U

+

= (11)

where

() () () () () ()

Wdiff(,) | ()| | ()| ((), ())
T U U T T U

T U T U

a r r a r r a r r

T U Ψ a | r Ψ a | r d Ψ a | r Ψ a | r
π π π π π π∈ − ∈ − ∈ ∩

= + +∑ ∑ ∑ , (12)

() ()

| () () (() ())
Wintersect(,)

2
T U

T U T U

a r r

Ψ a | r | |Ψ a | r | d Ψ a | r ,Ψ a | r
T U

π π∈ ∩

+ −

= ∑ , (13)

and

(() ())

() () either () or () degenerates to node ,

dist(() ()) otherwise.

T U

T U T U

T U

d Ψ a | r ,Ψ a | r

Ψ a | r Ψ a | r Ψ a | r Ψ a | r a

Ψ a | r ,Ψ a | r

⎧ −⎪
= ⎨

⎪⎩

 (14)

Note that Wdiff(T, U) and Wintersect(T, U) are used to measure the mutual

differences and the intersection between T and U, respectively. We explain these two

functions in the next example. The function d(ΨT(a|r), ΨU(a|r)) is used to calculate the

difference between the two subtrees ΨT(a|r) and ΨU(a|r). If either ΨT(a|r) or ΨU(a|rb)

degenerates to a node a, we directly calculate their weight difference as their difference.

Otherwise, we recursively use the dist(·,·) to calculate the distance between ΨT(a|r) and

ΨU(a|r) as their difference. In the latter case, we tend to treat ΨT(a|r) and ΨU(a|r) are

similar, since both of them are concept trees with a common fully grown root node a,

and can be considered as two groups of relevant items under the same category a. Thus,

we use distance function to measure their difference instead of using their weight

difference. Usually, the weight difference between ΨT(a|r) and ΨU(a|r) are much bigger

than the distance.

Figure 4：Two concept trees and their first level subtrees.

r

c d a a

U T

b

r

Extended Self-Organizing Map on Transactional Data 195

We further explain the distance function by an example in Fig. 4. From the point of

view of the two root nodes, the subtree ΨT

(b|r) is completely in T and not in U, vice

versa the subtrees ΨU

(c|r) and ΨU(d|r) are completely in U and not in T. ΨT

(a|r) and

ΨU(a|r) are two similar subtrees because all of the items in both of the two subtrees

belong to the same category node a. However, differences may occur inside the two

subtrees. Thus we recursively use the distance function to measure their differences.

Therefore, by the definition of Wdiff(·,·), the total mutual differences between T and U

are as follows:

 Wdiff(T, U)=|ΨT(b| r)|+ |ΨU(c|r)|+|ΨU(d|r)|+dist(ΨT(a|r), ΨU(a|r)) (15)

Again, from the two root nodes’ view, ΨT(a|r) and ΨU(a|r) are in common once their

difference has been subtracted. So, by the definition of Wintersect(·,·), the intersection

between T and U is calculated by the following average:

2

))()((dist|)()(|
) ,Wintersec(

a|r,Ψa|rΨa|r|Ψ| a|rΨ
UT UTUT

−+
= (16)

Such a distance function defined on concept trees can measure the differences in

their tree structures. Now, based on the above distance function defined on concept trees,

we give a distance measure between any two transactions ti and tj as follows.

 dist(ti, tj)=dist(Ti, Tj) (17)

where Ti and Tj are the corresponding transaction trees of ti and tj, respectively. It

measures not only the differences between transactions in their items but also the

differences between transactions in their trees structures. That is, based on the concept

hierarchy H, the distance measure takes the relevancy between items into account.

We demonstrate the characteristics of the distance function by the following

example. Suppose there are four transactions t1={a}, t2={b}, t3={c}, and t4={a, c}

whose items come from some concept hierarchy, and their corresponding transaction

trees are depicted in Fig. 5, respectively. Then, we have dist(t1, t2)=1/8, dist(t1, t3)=1,

dist(t2, t3)=1, and dist(t1, t4)=1/2 by using the above distance function. If the traditional

Jaccard’s coefficient is applied, then the relationship of the items in the concept

hierarchy is ignored, and we have dist(t1, t2)=1, dist(t1, t3)=1, dist(t2, t3)=1, and dist(t1,

t4)=1/2. The similarity among t1, t2, t3, and t4 cannot be identified.

196 資訊管理學報 第十九卷 第一期

Figure 5：Transaction trees of t1, t2, t3 , and t4.

3.3 Operators on concept trees

In order to modify the concept trees in our SetSOM, we extend three set operators,

union, intersection and difference, on concept trees. Let T and U be two concept trees of

H. T∩ U and T∪U are denoted as the intersection and the union of T and U,

respectively. T-U is denoted as the difference of T from U. Firstly, T∩ U is defined as

the concept tree with nodes in both T and U. Let a be a node in T∩ U. We

define))(),(min()(agagag
UTUT

=
∩

. Next, T∪U is defined as the concept tree with

nodes in T or U. Let b be a node in T∪U. The growth value of b is determined as

follows.

⎪
⎩

⎪
⎨

⎧

∈∈

∈∉

∉∈

=
∪

UbTif bbgbg

UbTif bbg

UbTif bbg

bg

UT

U

T

UT

 and))(),(max(

 and)(

 and)(

)((18)

The tree difference of T from U, T-U, is defined as follows. If a node c is in T and

not in U, then c is in T-U, and its growth value is gT(c). If c is in both of T and U, and

gT(c)>gU(c), then c is in T-U, and its growth value is gT(c)-gU(c). Otherwise, c is not in

T-U. Thus, if c is a node in T-U, the growth value of c is determined as follows.

⎩
⎨
⎧

>∈∈−

∉∈
=

−)()(and , ,)()(

 and)(
)(

.

cgcgUcTif ccgcg

UcTif ccg
cg

UTUT

T

UT

i

 (19)

The result of T-U is no more a concept tree. It is possible that T-U could contain

many subtrees of T. For example, if U is composed of only one root node r with fully

grown, and T is a concept tree whose root node r has three fully grown child nodes, say,

y2

a

y1

x1

r r r

x1

y1

b

r

x1

y1

a c

y2

x2

T1 T2

c

x2

T3 T4

Extended Self-Organizing Map on Transactional Data 197

w1, w2, and w3, then T-U would contain three subtrees of T whose root nodes are those

three child nodes, w1, w2, and w3, of r in T. They are no longer concept trees.

Let T and U be any two concept trees of H, then we have the following properties:

(i) |||||| || UTUTTUUT ∩+−+−=∪ and (ii) |||| || TUTUT −+=∪ . Follow the

definitions of the above three operators, the two properties can be proved.

3.4 SetSOM and its algorithms

3.4.1 Initialization phase

The SetSOM is a self-organizing map whose neurons are arranged in a lattice on a

two-dimensional map. The lattice can be rectangular or hexagonal. Instead of using

reference vectors as the prototypes in the conventional SOM, the prototype of each

neuron in the SetSOM is a concept tree of the concept hierarchy H. It is quite different

from the other SOM models at this point. Thus, before learning from input patterns,

each neuron in the SetSOM will be initially assigned a concept tree as its prototype.

Those concept trees can be randomly generated based on the concept hierarchy H. For

convenient sake, for each neuron, a transaction is randomly drawn from the dataset then

its corresponding transaction tree is simply assigned as the neuron’s prototype.

3.4.2 Training phase

In this phase, the SetSOM learns from input patterns randomly and iteratively. The

input patterns are the transactions from the dataset D. Once a transaction is randomly

drawn from D, the SetSOM learns from it. The learning process is continued until some

criterion is met. In our later experiments, criterions are usually predefined and fixed

iteration numbers, but it is related to the number of the neurons on the map (Kohonen et

al. 1996; Vesanto et al. 2000).

The same as the traditional SOM models, there are two key steps whenever a

transaction is given in this training phase. The first one is to find the best matching unit

among all the neurons on the map. The second is to adapt the prototypes of the neurons

which are in the neighborhood of the BMU. In the first step, suppose t is the transaction

randomly chosen from the dataset D, and its corresponding transaction tree T is fed to

the SetSOM. Then the BMU c can be found as follows.

),(minarg
i

i

UTdistc = , (20)

where Ui is the concept tree of the ith neuron in the SetSOM. That is, the BMU is the

198 資訊管理學報 第十九卷 第一期

neuron which has the smallest distance between its concept tree and the given

transaction tree.

In the second step, the neurons in the neighborhood of the BMU learn from the

transaction t. The transaction tree of t is denoted as T(s) to emphasize the current time is

at s. Those concept trees of the neurons in the neighborhood of the BMU are adjusted

according to T(s) as well as the neighborhood function h(s).

Let i be a neuron in the neighborhood of the BMU and Ui(s) be the concept tree of

the neuron i at the time s. According to the adaptation mechanism of the conventional

SOM, which we have described in our previous section, Ui(s) should be adjusted toward

T(s) such that the distance between them is decreased. That is, if dsUsTdist
i

=))(),((,

the concept tree of the neuron i after modification, i.e., Ui(s+1), must satisfies the

following two equations:

))(1())1(),((shdsUsTdist
cii

−⋅=+ (21)

)())1(),((shdsUsUdist
ciii

⋅=+ (22)

where hci(s) is the value of the neighborhood function at the time s. That

is,)(shd
ci

⋅ should be the total adjustment from Ui(s) to Ui(s+1) such that Ui(s+1) is

more similar and closer to the input transaction tree T(s). Nevertheless, It is difficult to

have Ui(s+1) which satisfy both of the equations (21) and (22) especially when treating

non-vector data. The similar case happens in the study of Günter and Bunke (2002). It

can be proved that Ui(s+1) which satisfy both of the equations (21) and (22) is

impossible, when the distance function is defined below. Owing to the limit in pages,

we omit the proof.

UT

TUUT
T, U

∪

−+−

=)(dist (23)

Next, we describe the way how we adjust the concept tree Ui(s) of the neuron i

such that Ui(s+1) can get more similar to T(s) at time s. For convenient sake, the

concept trees of Ui(s) and T(s) are simplified to Fig. 6(a) and 6(c), respectively. The

areas filled with little dots in Fig. 6(a) and 6(c) are the common parts of Ui(s) and T(s).

The area filled with horizontal lines in Fig. 6(a) represents the tree difference of Ui(s)

from T(s), i.e.,)()(sTsU
i

− . We call it the negative part of Ui(s), since we expect a

fraction of this part will be pruned from Ui(s). The area filled with vertical lines in Fig.

Extended Self-Organizing Map on Transactional Data 199

6(c) represents the tree difference of T(s) from Ui(s), i.e.,)()(sUsT
i

− . We call it the

positive part of Ui(s) at this adaptation, since we expect a fraction of this part will grow

up in Ui(s).

Figure 6：Adaptation of the concept tree Ui(s) of neuron i when T(s) is given at time s.

Therefore, a reasonable way to adjust the concept tree Ui(s) of the neuron i such

that Ui(s) can get more similar and closer to T(s) is to prune a fraction of the negative

part from Ui(s) and to grow a fraction of the positive part in Ui(s). Suppose the fraction

which will grow up in Ui(s) takes a percentage h1 of the positive part and the fraction

which will be pruned from Ui(s) takes a percentage h2 of the negative part. Fig. 6(b)

represents the concept tree of the neuron i after adaptation.

Let Wpos=|T(s)-Ui(s)| and Wneg =|Ui(s)-T(s)|. Once the percentages h1 and h2 are

determined, Wpos×h1 of the weight of the positive part will grow in Ui(s) and Wneg×h2 of

the weight of the negative part will be pruned from Ui(s). We call Wpos×h1 and Wneg×h2

the positive and negative adjustment value, respectively.

Within the positive part, there may contain many subtrees of T(s) with different

weights. If Y is one of the subtrees with weight |Y|, then ∑=
−∈)()(||sUsTYpos i

YW . The

leaves or nodes starting from the root node of Y will grow up in Ui(s). It is possible the

root node of Y has partially grown in Ui(s). Totally a fractional weight, |Y|×h1, of Y will

grow in Ui(s). Moreover, the parent node of the root node of Y is called the growing

point of Y in Ui(s).

Similarly, within the negative part, there may contain many subtrees of Ui(s) with

different weights. If Y is one of the subtrees with weight |Y|, then ∑=
−∈)()(||sTsUYneg i

YW .

The leaves or nodes of Y will be pruned from U. Totally, a fractional weight, |Y|×h2, of Y

will be pruned from Ui(s).

In Fig. 7, we illustrate the subtrees in the negative and the positive parts of a

200 資訊管理學報 第十九卷 第一期

concept tree Ui(s) when an input pattern T(s) is given. Suppose x1 is partially grown in

Ui(s), and then the growing points are the nodes r and w1 in Ui(s), from where the

subtrees rooted at w2, w3, x1, and x2 will grow.

Figure 7：The subtrees in the negative and the positive part of a concept tree Ui(s) when

an input pattern T(s) is given. (a) Ui(s) and the growing points, r and w1. (b)

T(s). (c) The subtrees in the negative part. (d) The subtrees in the positive part.

Since the node x1 in Ui(s) is partial grown, x1 is only partially in T(s)-Ui(s).

So far, based on the adaptation mechanism we have described, the adapted concept

tree gets similar and closer to the input pattern. However, It is difficult to have Ui(s+1)

which satisfy both of the equations (21) and (22). Thus, we take h1=h2=hci(s)

heuristically and simply. Although the incurable adaptation error could exist, Ui(s+1)

gets far away from Ui(s), and Ui(s+1) gets closer to T(s).

3.4.3 Adaptation algorithms of SetSOM

Now the entire algorithm of the adaptation step is shown in Fig. 8. Just as we have

mentioned above, a transaction tree T(s) and the BMU at time s are given as the inputs.

At the beginning of the algorithm, the learning rate α(s) and the updating radius σ(s) are

recalculated at this step s; and the location of BMU is determined on the map.

Then for each neuron i in the neighborhood of BMU, its prototype, i.e., the concept

tree Ui (s), of the neuron is modified based on the input pattern T(s) as well as the value

of the neighborhood function hci(s). During the modification process, the positive and

the negative parts are determining as well as the growing points. It is easy to find out

the subtrees in both of the positive and the negative parts of Ui(s), when we traverse the

trees nodes of Ui(s) and T(s) from their roots and recursively compare their child nodes.

w3 w2

x2 x1 x3

w4

r

w3 w2 w1

x2 x1

r

w1

(b) T(s) (a) Ui(s)

w4

x1

(d) T(s)−Ui(s) (c) Ui(s)−T(s)

x3

Extended Self-Organizing Map on Transactional Data 201

PrototypeAdaptation(T, BMU, s)

Input: Input pattern T, BMU, training time s

Output: Updated prototypes of the neighboring neurons around BMU

Recalculate α(s) and σ(s) such that they are monotonically decreasing with s;

Let (x,y) be the location of the BMU in the map;

Let N(x, y) be the neighborhood centered at (x, y) within a specified range, σ(s);

For each neuron i in N(x, y)

Let positive links the subtrees in T- Ui

Let growPoints links the nodes in Ui that new branches will grow

Let negative links the subtrees in Ui -T

 Let (u,v) be the location of i in the map;

Let r= dist((u, v), (x, y)); // Euclidean distance between i and BMU on the Map

 Let h=α*exp(-(r*r)/(2*σ*σ)); // the neighborhood function

 Let h1 = h2= h;

 Ui.ManySubtreesGrow(growingPoints, positive, h1);

 Ui.ManySubtreesPrune(negative, h2);

Figure 8：Algorithm of prototype adaptation.

Then by using the ManySubtreesGorw algorithm, which is depicted in Fig. 9, a

fraction of the positive part grows up in Ui. Each subtree in the positive part will grow

up under the OneSubtreeGrow algorithm, which is similar to the ManySubtreesGorw

algorithm, so we omit it. Similarly, by using the ManySubtreesPrune algorithm, also

depicted in Fig. 9, a fraction of the negative part is pruned from Ui. Each subtree in the

negative part is pruned by the OneSubtreePrune algorithm, we omit it, too.

Figure 9：Algorithm of ManySubtreesGrow and ManySubtreesPrune.

ManySubtreesPrune(negative, h2)

y=negative;

while(y!=null)

p=y.weight * h2;

 OneSubtreePrune(y.root, p);

 y=y.next; // next subtree in negative link

ManySubtreesGrow(growingPoints, positive, h1)

x=growingPoints;

y=positive;

while(y!=null)

 g=y.weight * h1;

 OneSubtreeGrow(x.root, y.root, g);

 y=y.next; // next subtree in positive link

 x=x.next; // next growing point in U

202 資訊管理學報 第十九卷 第一期

3.5 Evaluation of mapping and clustering quality

3.5.1 Mapping quality

Two measures are used to observe the mapping qualities: the trustworthiness and

the continuity functions. When the nearest neighbors of an object in the mapped space

are also close in the original data space, it is said the mapping is trustworthy

(Vathy-Fogarassy & Abonyi 2009; Kaski et al. 2003; Venna & Kaski 2005). Let N be

the number of the objects to be mapped, Uk(i) be the set of objects that are the k nearest

neighbors of the data object i in the visualization map, but not in the original data space.

The trustworthiness of the mapping can be calculated as follows.

 ∑ ∑
= ∈

−

−−

−=

N

i iUj k

kjir
kNNk

k
1)(

)),((
)132(

2
1)ness(Trustworth (24)

where r(i,j) denotes the rank of the object j relative to i in data space.

When objects near to each other in the data space are also close on the map, it is

said the mapping is continuous (Vathy-Fogarassy & Abonyi 2009; Kaski et al. 2003;

Venna & Kaski 2005). The measure of the continuity of a mapping is calculated as

follows.

 ∑ ∑
= ∈

−

−−

−=

N

i iVj k

kjis
kNNk

k
1)(

)),((
)132(

2
1)(Continuity (25)

where s(i,j) is the rank of the data object j relative to i in the output space, and Vi(k)

denotes the set of those data objects that are the k nearest neighbors of data object i in

the original space, but not in the mapped space. The larger values of both of the

trustworthiness and the continuity are better in mapping quality.

3.5.2 Clustering quality

We evaluated the clustering quality by the F measure and the weighted entropy.

The F measure is defined as follows.

),(max jiF
N

N
F

i
j

i∑= (26)

where F(i,j)=2P(i,j)R(i,j)/(P(i,j)+R(i,j)), P(i,j)=Nij/Nj, and R(i,j)=Nij/Ni, Ni is the number

of objects belonging to class i, Nj is the number of objects belonging to cluster j, Nij is

Extended Self-Organizing Map on Transactional Data 203

the number of objects belonging to class i in cluster j. N is the total number of objects in

dataset, P(i, j) is the precision of cluster j in class i, and R(i, j) is the recall of class i in

cluster j. F(i, j) is the F measure of cluster j in class i. The larger F is better in clustering

quality. The second measure of clustering quality is the weighted entropy defined as

follows.

 ∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⋅−=

j i j

ij

j

ijj

N

N

N

N

N

N
log EntropyWeighted (27)

The smaller weighted entropy is better in clustering quality.

4. Experiments

We conducted four experiments to evaluate the different characteristics of the

SetSOM. Synthetic datasets were used in the first three experiments to demonstrate the

projecting ability of the SetSOM and its mapping quality. The first experiment is a

robustness testing of the SetSOM. The second and the third ones are to demonstrate the

properties of the topological preservation and the visualization effect of the SetSOM,

besides, the mapping quality is observed. By using one real dataset, the fourth

experiment was conducted to investigate the SetSOM in clustering performance

preliminarily. Comparisons with the SOM and the SCM are performed in all of the

experiments.

The neurons of the three comparing models, SetSOM, SOM, and SCM, are all

arranged in rectangular lattices in their own 2-D maps. The parameters setting of both

the SetSOM and the SOM refer to the suggestions of the SOM_PAK (Kohonen et al.

1996) and the SOM_Toolbox (Vesanto et al. 2000). The number of the neurons in a map

is about N5 , where N is the number of data objects in a dataset.

In the SetSOM and the SOM, the Gaussian function is used in the neighborhood

function. The learning rate is of the form, α(s)=α(0)×(1.0–s/S), where the initial value

α(0)=0.5, s is the time, and S is the total iteration times. The updating radius is of the

form, σ(s)=1+(σ(0)–1)×(1.0–s/S) with σ(0) is about half of the width of the map. The

number of training iterations is set to 10 times of the number of neurons. In the SCM,

the Mexican hat is used as its neighborhood function according the author’s suggestion

(Flanagan 2003). The Mexican hat is defined as follows.

204 資訊管理學報 第十九卷 第一期

)exp()1()(22
iaibaih ⋅−⋅⋅⋅−= (28)

where a=0.35 is a constant, determining the width of Mexican hat and b=2.0×s/S varies

with time s. The learning rate is α(s)=0.25×S/(0. 5×S +s), and the value of the threshold

is x(s)=0.2×s/S

Concept hierarchies are used for the SetSOM in all of the following experiments,

of course. In the SOM, only the item nodes in concept hierarchies are used, and

transactions are needed to convert to binary vectors. For example, if a transaction has

only the 5th, 9th, and 11th items which come from a concept hierarchy with 12 item

nodes, then its corresponding binary vector is (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0). Anyway,

both the SOM and the SCM ignore the information in concept hierarchies.

4.1 Robustness testing experiment

Since the amount of transactions is very tremendous in many applications, in this

experiment, we test the robustness of the SetSOM. Before doing this experiment, a

virtual retailer which has 100,000 products (items) is created. Suppose all of the

products form a three levels concept hierarchy as follows. There are 20 main categories,

50 subcategories per each main category, and 100 products per each subcategory.

Three datasets, which have 10k, 50k, and 100k transactions, are created,

respectively. All of the transactions are simulated by the following rules. Let T be the

size of any transaction and X be a Poisson distribution with E(X)=14. Assume T=X+1.

That is, once X is given, T is given. Then, for each transaction, there are T items drawn

randomly from the 100,000 items without replacement Besides, E(T)=E(X)+1=15, that

is, there are averagely 15 items for each transaction in this retailer.

For each dataset, the three comparing models are executed respectively, and their

execution times are recorded. In Fig. 10, the dataset with 10k transactions is mapped by

the SetSOM. Each neuron with nonzero BMU count is displayed by a circle. The area of

the circle is proportional to its own BMU count. The 10k transactions seem uniformly

distribute on the 2-D map. This is what we expect. Besides, we compare the execution

time of the three comparing models in the training phase with the three different

datasets; the result is depicted in Fig. 11. It is obvious that the SetSOM outperforms

both the SCM and the SOM.

Extended Self-Organizing Map on Transactional Data 205

Training Time

0

10000

20000

30000

40000

50000

60000

10 50 100
Size of dataset (k)

S
e
c

SOM

SCM

SetSOM

4.2 Simulative library experiment

In the following experiment, we observe the visualization and the mapping

qualities of the SetSOM and compare with the other two models. A simulative college

library which has 1,250 books is created. Suppose all of the books form a three levels

concept hierarchy as follows. (1) Level-1 nodes: there are five main categories (level-1

nodes) which are computer science (CS), mathematics (MA), physics (PH), biology

(BI), and chemistry (CH). (2) Level-2 nodes: each main category has five subcategories

(level-2 nodes), e.g., PH.1, PH.2, PH.3, PH.4, PH.5 are the five subcategories of the

main category PH. (3) Level-3 nodes (leaves): each subcategory has 50 books (level-3

nodes, or leaves), e.g., PH.1.1, …, PH.1.50 are books belonging to PH.1 subcategory.

We simulated 2000 library checkout patterns, which come from four different

classes of students. Each class of checkouts has its own distribution in checkout content;

they are listed in table 1. Moreover, class I and II of checkouts are further divided into

three and two subclasses, as shown in table 2 and 3, respectively. Totally, there are

seven groups distributed differently in the library dataset.

Figure 10：10k transactions of virtual

retailer mapped by SetSOM

on a 24x24 units.

Figure 11：Comparison of SetSOM,

SCM and SOM in training

time for 10k, 50k and 100k

transactions

206 資訊管理學報 第十九卷 第一期

Table 1：Simulative library dataset.

Class # of checkouts Content per checkout Source

I 600
CS books: 80%

MA books: 20%
Computer science students

II 500

MA books: 70%

CS books: 20%

PH books: 10%

Mathematics students

III 500

PH books: 80%

MA books: 10%

CH books: 10%

Physics students

IV 400
BI books: 80%

CH books: 20%
Biology students

Table 2：The three subclasses of class I in simulative library dataset.

Content per checkout
Subclass

Under CS (80%) Under MA (20%)
of checkouts

I.1
CS.1: 90%

CS.2: 10%

MA.1: 90%

MA.2: 10%
250

I.2
CS.2: 90%

CS.3: 10%

MA.2: 90%

MA.3: 10%
200

I.3

CS.2: 10%

CS.3: 10%,

CS.4: 80%

MA.2: 10%

MA.3: 10%

MA.4: 80%

150

Table 3：The two subclasses of class II in simulative library dataset.

Content per checkout
Subclass

Under CS (20%) Under MA (70%) Under PH (10%)
of checkouts

II.1
CS.1: 80%

CS.2: 20%

MA.1: 80%

MA.2: 20%

PH.1: 80%

PH.2: 20%
300

II.2
CS.2: 20%

CS.3: 80%

MA.2: 20%

MA.3: 80%

PH.2: 20%

PH.3: 80%
200

Each checkout of different classes is simulated by the following rules. Let T be the

number of books in a checkout, and let X be a Poisson distribution with mean λ, i.e.,

λ=E[X]. Assume T=X+1, that is, T is determined by X. Besides, E[T] = λ+1. In our

dataset, λ is set to nine. That is, in this simulative library, the average number of books

Extended Self-Organizing Map on Transactional Data 207

borrowed by students in each checkout is ten. Whenever the size of a checkout is

determined, books in checkouts are decided by the checkout content distribution in

different classes, which are listed in table 1, 2 and 3, respectively. For example, if a

checkout belongs to class I.1, each book in this checkout has 72%, 8%, 18%, and 2% in

probability from the subcategory CS.1, CS.2, MA.1, and MA.2, respectively.

4.2.1 Experimental result

Fig. 12 (a), (b) and (c) show the results of the library dataset mapped by the three

comparing models, SetSOM, SCM, and SOM, respectively. Each map is displayed by a

15 by 15 U-Matrix (Ultsch 2003) as its background. In U-Matrix, the gray level in each

neural unit represents the average distance between its own prototype and the prototypes

of its nearest neighboring units. The larger the distance is, the darker the gray color is. It

is reasonable the units with higher similarity in their prototype will gather in some

lighter gray area. Therefore, the units of darker gray form a boundary of the lighter gray

areas. We expect the input transactional patterns with higher similarity will be projected

into some lighter gray area. After displaying the U-Matrix, we draw circles for units

which have nonzero BMU count in foreground. The area of each circle depends on the

unit’s BMU count. We expect the input patterns with higher similarity will be projected

into the same neuron or the neighboring neurons.

(a) (b) (c)

Figure 12：The mapping results of the three comparing models when using the

simulative library dataset. (a) is the mapping results of the SetSOM, (b) is

of the SCM, and (c) is of the SOM; each map has 15 by 15 units.

In order to know the mapping quality in visualization, we randomly scatter the

208 資訊管理學報 第十九卷 第一期

input patterns with specific colors within their BMU’s circle. The colors of the input

patterns are based on the classes to which they belong. Seven colors are assigned to the

seven classes. In class I, the three subclasses of the checkouts are colored by red, green,

and yellow, respectively. In class II, the two subclasses of the checkouts are colored by

blue and magenta, respectively. The checkouts in class III and IV are colored by cyan

and orange, respectively.

It is obvious the SetSOM has a better visualization and mapping quality than the

others. In Fig. 12(a), the checkouts which belong to the same class are gathered as a

group or distributed as nearer neighbors, and the structure of the U-Matrix perfectly

coincides with the structure of our testing dataset. It is easy and precise to separate the

SetSOM units into different groups with the aid of the U-Matrix. In fact, the gaps

among units are clear without the U-Matrix. Besides, when comparing with the other

models, the SetSOM gathers the three subclasses of class I and the two subclasses of

class II closely than the other classes. The SetSOM reflects the actual structure of the

dataset on the map more precisely than the others. In Fig. 12(b), the SCM can not

exactly map the same class of the checkouts together and the boundaries of its U-Matrix

are not very clear. In Fig. 12(c), the SOM has the same problems as the SCM, and the

checkouts tend to be projected all over the neurons on the map.

Trustworthy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

k

SetSOM

SCM

SOM

Continuity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600
k

SetSOM

SCM

SOM

(a) (b)

Figure 13： Mapping qualities of the three comparing models when using the

simulative library dataset as an input. (a) for trustworthiness and (b) for

continuity

Extended Self-Organizing Map on Transactional Data 209

Fig. 13 shows the trustworthiness and the continuity values versus the number of

neighbors, k, varying from 50 to 500 when the simulative library dataset is mapped by

the three comparing models. It is obvious the SetSOM outperforms than the others. All

the values of the trustworthiness and the continuity of the SetSOM are greater than 0.80

and better than the others. That is, the neighborhood preservation and the local and

global mapping quality of the SetSOM are better than the others.

4.3 Real dataset: articles of ACM proceedings

The real transactional dataset was extracted from the articles of five ACM

proceedings including SIGIR, SIGMOD, SIGCHI, SIGMM, and SIGCOMM between

2000 and 2009. It is reasonable to consider each of the five ACM proceedings as a

different class of articles. Based on the content, each article had been assigned some

classification codes, which are considered as the transaction of the article. There are at

least one primary classification code and a few additional classification codes. For

example, “Comprehensive query-dependent fusion using regression-on-folksonomies: a

case study of multimodal music search” (Zhang et al. 2009) is an article from the

SIGMM, it contains three codes: {H.3.3.Query formulation, H.3.3.Search process,

H.5.5.System}. For each article, the classification codes and its proceeding’s name were

extracted and saved. If an article contains only one code, we ignored it. At last, 3,357

transactions were collected. Table 4 gives the description of the real dataset in detail. All

of the codes come from the ACM Computing Classification System (CCS); it is a

four-level concept hierarchy. All the classification codes of the ACM articles and the

CCS can be collected and downloaded from the ACM digital library.

Table 4：Articles of the five ACM proceedings

Proceeding # of articles Min. # of codes Max. # of codes

SIGIR 689 2 10

SIGMOD 537 2 7

SIGCOMM 158 2 6

SIGCHI 920 2 18

SIGMM 1053 2 19

The mapping results of the articles by the three comparing models SetSOM, SCM,

and SOM are depicted in Fig. 14(a), (b) and (c), respectively. Each map has 18 by 18

210 資訊管理學報 第十九卷 第一期

units and a U-Matrix displayed in the background. The boundaries are clear in the

SetSOM. With the aid of the U-Matrix, we can separate the units into different groups in

the SetSOM. Each article is mapped into its BMU with a specific color. Five different

colors, red, green, yellow, blue, and magenta are assigned to SIGIR, SIGMOD,

SIGCOMM, SIGMM, and SIGCHI, respectively. In the SetSOM, most of the articles

belonging to the different proceedings can be gathered into different units. However,

there exist many small units scattering over the map of the SetSOM. Moreover, quit a

few articles of the SIGMM colored by magenta are mixed with the articles of the other

proceedings in many units. This phenomenon emerges in both of the comparing models.

In order to analyze this phenomenon, we removed the articles of SIGMM in the dataset

and applied the SetSOM on the remained dataset. Fig. 15 depicts the result. Articles

belonging to the different proceedings are almost projected into different units, although

the units with the same color are not close together. It is reasonable to infer the topics in

the SIGMM are more diverse than the other proceedings. Moreover, the topics in the

SIGMM and the topics in the other proceedings are overlapping in some extent.

(a) (b) (c)

Figure 14： The mapping results of the ACM proceedings’ articles. (a) is of the

SetSOM, (b) is of the SCM, and (c) is of the SOM. Each map has 18 by 18

units.

Extended Self-Organizing Map on Transactional Data 211

Figure 15： The mapping results of the ACM proceedings’ articles by the SetSOM,

when the articles of the SIGMM are removed.

In order to validate the mapping result (Fig. 14(a)) of the SetSOM further, six of

the neurons which locate at (4, 3), (10, 10), (4, 5), (12, 3), (11, 5), and (7, 8) in Fig. 14(a)

were used to validate the projection result and to illustrate the differences of the articles

among the neurons and the similarity of the articles inside the neurons. Note that (0, 0)

is located at the upper left corner on the map. The first three neurons are the top three in

BMU count; there are about 16.7%, 16.6%, and 7.0% of the articles mapped into the

three neurons, respectively. The others are the top three in entropy value; there are about

2.7%, 0.2%, and 0.4% of the articles mapped into the three neurons, respectively.

For each of the six neurons, the classification codes of the articles inside the

neuron were counted, and then the frequency distribution of the classification codes was

drawn as a histogram. Fig. 16(a)-(f) depict the frequency distributions of the six neurons,

respectively. All of the classification codes were only counted to the level-2 codes at

most, for example, the three codes, H.2, H.2.1, and H.2.8.Data Mining, are all counted

as the level-2 classification code, H.2. Furthermore, the classification codes were also

counted according to what proceedings the articles belong to. Colors and styles in the

histograms show the different proceedings.

In order to compare the distributions easily, the classification codes in the X-axes

of Fig. 16(a), (b) and (c) are the same, and similarly in Fig. 16(d), (e), and (f). It is clear

that the six neurons have very different kinds of distributions of their classification

codes, that is, among the six neurons the types of their articles are quite different.

In Fig. 16(a) to (c), corresponding to the neurons (4, 3), (10, 10), and (4, 5), most

of the classification codes concentrate on one level-2 classification code, that is, the

212 資訊管理學報 第十九卷 第一期

articles inside each of the three neurons must have high relevancy. We inspected the

articles inside the neuron (4, 3), we found “information search, retrieval, indexing” is

the main topic of the articles inside this neuron. Besides, 63.8% of the articles in neuron

(4, 3) come from SIGIR; 78.6% of the articles in neuron (10, 10) come from SIGCHI;

and 78.4% of the articles in neuron (4, 5) come from SIGMOD. However, the articles of

SIGMM emerge in all these neurons. The neuron (4, 3) was inspected again; we found

that those articles not coming from SIGIR are also relevant to information retrieval. For

instance, the article “Comprehensive query-dependent fusion using

regression-on-folksonomies: a case study of multimodal music search” (Zhang et al.

2009), which come from SIGMM, is obviously related to multimedia as well as

information search and retrieval. Thus, it is reasonable this article is projected in this

neuron.

0

200

400

600

800

1000

1200

A
.0 G

.
H
.

H
.0

H
.1

H
.2

H
.3

H
.4

H
.5

H
.m

Classification code

F
re
q
u
e
n
c
y

SIGMOD

SIGIR

MM

CHI

0

200

400

600

800

1000

1200

1400

A
.0 G

.
H
.

H
.0

H
.1

H
.2

H
.3

H
.4

H
.5

H
.m

Classification code

F
re
q
u
e
n
c
y

SIGMOD

SIGIR

MM

CHI

0

100

200

300

400

500

A
.0 G

.
H
.

H
.0

H
.1

H
.2

H
.3

H
.4

H
.5

H
.m

Classification code

F
re
q
u
e
n
c
y

SIGMOD

SIGIR

MM

(a) (b) (c)

0

10

20

30

40

50

60

70

80

90

100

C
.0

C
.1

C
.2

C
.3

C
.4

C
.5

D
.1

D
.2

D
.4

F
.2 H

H
.1

H
.2

H
.3

H
.4

H
.5

H
.m I.

2
I.
3

I.
4

I.
5

I.
7

J.
5

Classification code

F
re
q
u
e
n
c
y

SIGMOD

SIGIR

MM

COMM

CHI

0

1

2

3

4

5

6

7

8

9

C
.0

C
.1

C
.2

C
.3

C
.4

C
.5

D
.1

D
.2

D
.4

F
.2 H

H
.1

H
.2

H
.3

H
.4

H
.5

H
.m I.

2
I.
3

I.
4

I.
5

I.
7

J.
5

Classification code

F
e
q
u
e
n
c
y

SIGMOD

SIGIR

MM

CHI

0

5

10

15

20

25

C
.0

C
.1

C
.2

C
.3

C
.4

C
.5

D
.1

D
.2

D
.4

F
.2 H

H
.1

H
.2

H
.3

H
.4

H
.5

H
.m I.

2
I.
3

I.
4

I.
5

I.
7

J.
5

Classification code

F
re
q
u
e
n
c
y

SIGMOD

SIGIR

MM

CHI

(e)) (f)) (g)

Figure 16： The frequency distributions of the classification codes of the selected

neurons. (a), (b), (c), (d), (e), and (f) are the histograms of the neurons (4,

3), (10, 10), (4, 5), (12, 3), (11, 5), and (7, 8), respectively.

In Fig. 16(d) to (f), corresponding to the neurons (12, 3), (11, 5), and (7, 8), it is

easy to find articles in these neurons come from diverse proceedings; this is why their

entropy values are high. However, most of the articles have at least two classification

Extended Self-Organizing Map on Transactional Data 213

codes which are different in both of level-1 and level-2. For example, in the neuron (12,

3), C.2 and H.5 are the most common combination that the articles have. C.2 also

combines with other H.1, H.2, H.3, or H.4. We found “Networked information systems’

interfaces, retrieval, or database” is the main topic of the articles in this neuron. That is,

high relevant articles are grouped in this neuron, though they may come from different

proceedings.

Furthermore, we applied the K-Means to cluster the units with nonzero BMU count

in the above four trained maps in Fig. 14 and 15 in order to inspect the clustering

quality of the SetSOM preliminarily. The number of clusters was set from four to ten.

We evaluated the clustering quality by the F measure and the weighted entropy. The F

measures and the weighted entropy values of the four maps are depicted in Fig. 17(a)

and 17(b), respectively. We found the SetSOM has a higher clustering quality than the

other models, since its F measures are all higher than the other two models, and the

weighted entropy values are all less than the others. Moreover, we found the clustering

quality of the SetSOM map with SIGMM removed is much higher than the SetSOM

with the original dataset. It coincides with the above inference about the SIGMM.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10 11

K

F

SetSOM SCM SOM SetSOM-MM

Entropy

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

3 4 5 6 7 8 9 10 11

K

SetSOM SCM SOM SetSOM-MM

(a) (b)

Figure 17： (a) the F measures and (b) the entropy of clustering the SetSOM, SCM,

SOM and the SetSOM without SIGMM by K-Means, K=4, …, 10.

5. Conclusions and future works

In this paper, we convert transactional data to tree structures and devise a distance

function for the transactional data when an accompanied concept hierarchy exists.

Based on the structure of concept hierarchies, the distance function takes the relevancy

of items in transactions into account. Thanks to the tree-structured transactions and the

214 資訊管理學報 第十九卷 第一期

distance function, an extended SOM, the SetSOM, has been proposed to inspect the

topological order of the transactional data. Via the adaptation method, imitating from

trees growing in nature, the SetSOM has its good qualities in projecting transactional

data into a 2-D map as well as in visualizing the inner structure of transactional data.

From the experiments in the synthetic and the real datasets, the SetSOM outperforms

other SOM models in visualization, mapping and clustering qualities. Our future work

is to extend our model for transactional data no matter its concept hierarchy exists or not

and to develop a clustering method for the trained SetSOM neurons in order to get a

better clustering quality in transactional data.

6. Acknowledgement

This research was supported by the National Science Council, Taiwan, under grant

NSC 100-2410-H-224-003-MY2.

Reference

Chen, D.R., Chang, R.F., and Huang, Y.L. (2000), ‘Breast cancer diagnosis using

self-organizing map for sonography’, Ultrasound in Medicine and Biology, Vol. 1,

No. 26, pp. 405-411.

Flanagan, J.A. (2003), ‘Unsupervised clustering of symbol strings’, Proceedings of the

Int. Joint Conference on Neural Networks (IJCNN 2003).

Guha, S., Rastogi, R., and Shim, K. (2000), ‘ROCK: a robust clustering algorithm for

categorical attributes’, Information Science, Vol. 25, No. 5, pp. 345–366.

Günter, S., and Bunke, H. (2002), ‘Self-organizing map for clustering in the graph

domain’, Pattern Recognition Letters, Vol. 23, pp. 405–417.

Hammer, B., Micheli, A., Neubauer, N., Sperduti, A., and Strickert, M. (2005),

‘Self-Organizing Maps for Time Series’, Proceedings of the Workshop on

Self-Organizing Maps (WSOM 2005), Paris.

Han, J., and Kamber. M. (2001), Data Mining Concepts and Techniques, Morgan

Kaufmann, San Francisco.

He, Z., Xu, X., and Deng, S. (2005), ‘TCSOM: clustering transactions using

self-organizing map’, Neural Processing Letters, Vol. 22, pp. 249-262.

Himberg, J., Flanagan, J.A., and Mantyjarvi, J. (2003), ‘Towards context awareness

using Symbol Clustering Map’, Proceeding of WSOM (WSOM 2003).

Hsu, C.C. (2006), ‘Generalizing self-organizing map for categorical data’, IEEE

Extended Self-Organizing Map on Transactional Data 215

Transactions on Neural Networks, Vol. 17, pp. 294-304.

Hsu, C.C., Wang, K.M., and Wang, S.H. (2006), ‘GViSOM for multivariate mixed data

projection and structure visualization’, Proceedings of the Int. Joint Conference on

Neural Networks (IJCNN 2006), pp. 3300-3305.

Hua Yan, H., Chen, K., Liu, L., and Bae, J. (2009), ‘Determining the best K for

clustering transactional datasets: A coverage density-based approach’, Data &

Knowledge Engineering, Vol. 68, pp. 28–48.

Kaski, S., Nikkila, J., Oja, M., Venna, J., Toronen, J., and Castren, E. (2003),

‘Trustworthiness and metrics in visualizing similarity of gene expression’, BMC

Bioinformatics, Vol. 4, No. 48.

Kohonen, T. (1982), ‘Self-organized formation of topologically correct feature maps’,

Biological Cybernetics, Vol. 43, pp. 59–63.

Kohonen, T. (1996), ‘Self-organizing maps of symbol strings’, Technical Report A42,

Laboratory of Computer and Information Science, Helsinki University of

Technology, Finland.

Kohonen, T. (2001), Self-organizing maps, Springer, 3rd extended ed., Berlin.

Kohonen, T., and Somervuo, P. (1998), ‘Self-organizing maps on symbol strings’,

Neurocomputing, Vol. 21, pp. 19–30.

Kohonen, T., and Somervuo, P. (2002), ‘How to make large self-organizing maps for

nonvectorial data’, Neural Networks, Vol. 15, pp. 945–952.

Kohonen, T., Hynninen, J., Kangas, J., and Laaksonen, J. (1996), ‘SOM_PAK: the

self-organizing map program package’, Report A31, Helsinki University of

Technology, Available from http://www.cis.hut.fi/research/som_pak/.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., and Saarela, A.

(2000), ‘Self-organization of a massive document collection’, IEEE Transactions

on Neural Networks, Vol. 11, No. 3, pp. 574-585,.

Kohonen, T., Oja, O.E., Simula, A. Visa, S.A., and Kangas, J. (1996), ‘Engineering

applications of the self-organizing map’, Proceedings of the IEEE (IEEE 1996),,

Vol. 84, No. 10, pp. 1358-1384.

Lampinen, J., and Oja, E. (1992), ‘Clustering properties of hierarchical self-organizing

maps’, Journal of Mathematical Imaging and Vision, Vol. 2, pp. 261-272.

Somervuo, P. (2004), ‘Online algorithm for the self-organizing map of symbol strings’,

Neural Networks, Vol. 17, pp. 1231–1239.

Ultsch, A. (2003), ‘Maps for the visualization of high-dimensional data spaces’,

Proceedings of the 4th Workshop on Self-Organizing Maps (WSOM 2003),

216 資訊管理學報 第十九卷 第一期

Kitakyushu, Japan, Sep. pp. 225–230.

Vathy-Fogarassy, A., and Abonyi, J. (2009), ‘Local and global mappings of topology

representing networks’, Information Sciences, Vol. 179, pp. 3791–3803.

Venna, J., and Kaski, S. (2005), ‘Local multidimensional scaling with controlled

tradeoff between trustworthiness and continuity’, Proceedings of the Workshop on

Self-Organizing Maps (WSOM 2005), pp. 695–702.

Vesanto, J., Himberg, J., Alhoniemi, E., and Parhankangas, J. (2000), ‘SOM Toolbox for

Matlab 5’, Report A57, Helsinki University of Technology, Available from

http://www.cis.hut.fi/projects/somtoolbox/.

Wang, K., Xu, C., and Liu, B. (1999), ‘Clustering transactions using large items’,

Proceedings of the ACM Conference on Information and Knowledge Management

(CIKM 1999), pp. 483–490.

Yang, Y., Guan, S., and You, J. (2002), ‘CLOPE: a fast and effective clustering

algorithm for transactional data’, Proceedings of KDD (KDD 2002), pp. 682–687.

Yeh, M.F., and Chang, K.C. (2006), ‘A self-organizing CMAC network with gray credit

assignment’, IEEE Transactions on Systems, Man, and Cybernetics-Part B

Cybernetics, Vol. 36, No. 3, pp. 623-635.

Zhang, B., Xiang, Q., Lu, H., Shen, J., and Wang, Y. (2009), ‘Comprehensive

query-dependent fusion using regression-on-folksonomies: a case study of

multimodal music search’, Proceedings of the 17th ACM international conference

on Multimedia (MM 2009).

