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Abstract 

In many application domains, transactions are the records of personal activities. 

Transactions always reveal personal behavior customs, so clustering the transactional 

data can divide individuals into different segments. Transactional data are often 

accompanied with a concept hierarchy, which defines the relevancy among all of the 

possible items in transactional data. However, most of clustering methods in 

transactional data ignore the existing of the concept hierarchy. Owing to the lack of the 

relevancy provided by the concept hierarchy, clustering algorithms tend to separate 

some similar patterns into different clusters. Besides, their clustering results are not easy 

to be viewed by users. The purpose of this study is to propose an extended SOM model 

which can handle transactional data accompanied with a concept hierarchy. The new 

SOM model is named as SetSOM. It can project the transactional data into a 

two-dimensional map; in the meanwhile, the topological order of the transactional data 

can be preserved and visualized in the 2-D map. Experiments on synthetic and real 

datasets were conducted, and the results demonstrated the SetSOM outperforms other 

SOM models in execution time, and the qualities of visualization, mapping and 

clustering. 

 

Keywords: transactional data, self-organizing map, concept hierarchy, distance 

function on transactions, concept tree 

                                                           

* Corresponding author. Email: hsucc@yuntech.edu.tw 

2011/03/19 received; 2011/08/17 revised; 2011/10/25 accepted 



186 資訊管理學報 第十九卷 第一期 

 

延伸自組映射圖探勘交易型資料 

廖文忠 

國立雲林科技大學資訊管理系 
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摘要 

在許多應用領域，交易紀錄反映個人行為上的偏好或習慣，若將交易紀錄適

當分群，即可將不同行為類型的個人分到不同群組。交易型資料通常有概念階層

伴隨，概念階層反映所有可能交易項目之間的相關性，然而，概念階層卻被大多

數的分群演算法忽略，因此，易將相似度高的交易資料分屬不同群組；除此，分

群結果通常不易被使用者觀看。本論文目的在延伸自組映射圖探勘具概念階層的

交易資料，我們稱之為 SetSOM；SetSOM可將交易資料映射至二維平面上，同時

保有交易資料在其資料空間上的拓樸關係且可被觀看。利用人造資料及實際蒐集

的交易型資料，進行實驗發現，SetSOM無論在執行時間、視覺觀看品質、映射品

質、及分群品質均高於其他自組映射圖的表現，包括 SCM及 SOM。 

 

關鍵詞：交易型資料，自組映射圖，概念階層，交易型資料距離函數，概念樹。 
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1. Introduction 

Transactional data are common in many application domains such as marketing, 

finance, e-commerce, biology, medicine, etc. A typical example of transactional data is 

the market basket data, where each basket (or transaction) is a set of different items 

purchased by a customer in a transaction. Web pages browsed by visitors in a web site, 

books borrowed by students from their college library, and symptoms emerged in 

patients are another different examples. It is valuable to cluster transactional data into 

different groups. For example, the market basket data always reveal their customers’ 

shopping behaviors and personal favorites. Clustering the market basket data can 

separate the customers into different segments, so managers of the shopping store can 

adopt different marketing strategies for the different segments of the customers to 

maximize their profits. 

In many applications, transactional data are accompanied with a concept hierarchy 

or a taxonomy tree. Product catalogs of shopping stores, Web site structures, book 

categories of libraries etc. are examples of concept hierarchies. Concept hierarchies are 

tree structures (Han & Kamber 2001). All of the possible items in transactional data 

form the leaf nodes of the concept hierarchy. The non-leaf nodes are the categories (or 

concepts) of all the possible items. The relevancy among all of the possible items in 

transactional data is defined in the concept hierarchy. Items in the same category are 

more relevant than those of items in different ones. For example, in a shopping mall, 

apple juices are more relevant to grape juices than apples, since apple juices and grapes 

juices belong to the same juice category and apples are in the fruit category. If the apple 

juices are in shortage on the shelf, normally, customers tend to take a grape juice rather 

than an apple. 

So far, many transactional data clustering methods had been developed and have 

well clustering quality (Guha et al. 2000; Hua et al. 2009; Wang et al. 1999; Yang et al. 

2002). However, most of these clustering methods ignore the existing of concept 

hierarchies. The relevancy between individual items is never considered in most of the 

methods. Most of them put the transactions which have more items in common into the 

same cluster. The important information between the items is lost. It may cause that the 

transactions whose items are different but relevant are considered as different kinds of 

patterns. For example, if we have two transactions t1={apple juice, orange, coke} and 

t2={pesi, grape juice, apple} that come from a shopping mall. Most of the clustering 
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methods, like LargeItems (Wang et al. 1999), Clope (Yang et al. 2002), Scale (Hua et al. 

2009), would not put these two transactions into the same cluster, since these two 

transactions do not have any items in common. Put them into the same cluster would 

reduce the number of large items (Wang et al. 1999), slope (Yang et al. 2002), or density 

(Hua et al. 2009) of the cluster. It is easy to understand that these two transactions are 

similar since their items are highly relevant. 

Moreover, most of the clustering methods have difficulty in visualizing their 

clustering results, so the structure of the clusters can not be inspected by users easily. 

The self-organizing map (SOM), proposed by Kohonen (1982, 1995), has high quality 

in projecting high dimensional numerical data into a low dimensional space, typically a 

two-dimensional map, such that the projecting result can be viewed. Thanks to its well 

visualization property, the SOM has been applied to many related applications 

(Kohonen et al. 1996, 2000; Yeh & Chang 2006), including data clustering analysis 

(Chen et al. 2000).  

Recently, some SOM models like the SCM (Flanagan 2003; Himberg et al. 2003), 

the TCSOM (He et al. 2005) had been developed to handle transactional data, but they 

do not consider the existing of concepts hierarchies too. On another side, some SOM 

models, like the GSOM (Hsu 2006) and the GViSOM (Hsu et al. 2006) were proposed 

to handle mixed-type data. Although they take concept hierarchies, which are associated 

with each categorical feature, into account, they can not apply to transactional data well 

since their data objects are thought as fixed dimensional vectors, not sets. 

In this paper, an extended SOM model which can handle set-type transactional data 

accompanied with a concept hierarchy is proposed. We named it as SetSOM. SetSOM 

can project the transactional data into a two-dimensional map; in the meanwhile, the 

topological order of the transactional data can be preserved and visualized in the 2-D 

map. 

This study has the following contributions. The first one is the SetSOM extends the 

application scope of the conventional SOM to manage the transactional data with a 

concept hierarchy. The second is a distance function is given to measure the distances 

between transactions such that the relevancy of the items takes into consideration. The 

third is the data structure of the transactional data with a concept hierarchy can be 

precisely inspected by a visualization map. 

The rest of this paper is organized as follows. In section 2, the SOM and some 

extended models are reviewed. Section 3 gives the methodology of the SetSOM. 

Experiments are reported in section 4. Conclusions and future works are described in 
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section 5. 

2. Literature review 

2.1  Self-organizing map  

The self-organizing map (SOM) is an unsupervised neural network (Kohonen 1982, 

2001). It can project high dimensional data objects into a lattice of neurons, typically 

arranged on a 2-D map; in the meanwhile, the topological order among the data objects 

in their data space can be preserved on the 2-D map. The lattice can be rectangular or 

hexagonal. Each neuron has its own reference vector, which belongs to the same space 

of the data objects. After learning from input patterns, the reference vectors of the 

neurons will reflect the distribution of the data objects in their own data space.  

The neurons learn from the input patterns randomly and iteratively. In the 

traditional SOM, there are two key steps whenever an input pattern is randomly drawn 

from a dataset. The first one is to find the best matching unit (BMU) from all of the 

neurons on the map. If x is an input pattern, then the best matching unit c is found as 

follows. 

 ||||minarg
i

i

mxc −= , (1) 

where mi is the reference vector of the neuron i. That is, among all the neurons, c is the 

one which has minimal distance between its reference vector and x.  

The second key step is to adjust the reference vectors of the neurons which are in 

the neighborhood of the BMU. Let i be a neuron which is in the neighborhood of c. The 

reference vector mi of the neuron i is adjusted by the following equation. 

 )]()()[()()1( smsxshsmsm
iciii

−+=+ , (2) 

where hci(s) is the neighborhood function, 0<hci(s)<1, and s denotes the current time. 

The Gaussian kernel is widely used in the neighborhood function hci(s) as follows.  

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−⋅=

)(2
exp)()(

2

2

s

rr
ssh

ic

ci

σ

α , (3) 



190 資訊管理學報 第十九卷 第一期 

 

where )(sα is the learning rate, 0< )(sα <1, )(sσ is the width of the Gaussian kernel, and 

rc and ri are the locations of the neurons c and i on the map, respectively. Both 

)(sα and )(sσ are monotonically decreasing with time s. From equation (2), we have 

 )()()()](1[)1( sxshsmshsm
ciicii

+−=+   (4) 

That is, the newly reference vector of the neuron i is a linear combination of mi(s) and 

x(s). Since [1-hci(s)]+ hci(s)=1, mi(s+1) will be the point on the line segment between 

mi(s) and x(s) as depicted in Fig. 1. 

 

 

Figure 1：Adaptation of reference vector 

Let .)()( smsxd
i

−=  Then the reference vector of the neuron i after adaptation, i.e., 

mi(s+1), must be the vector that satisfies the following two equations: 

 ( 1) ( ) ( )
i i ci

m s m s h s d+ − = ⋅ , (5) 

 ( 1) ( ) [1 ( )]
i ci

m s x s h s d+ − = − ⋅ . (6) 

That is, after adaptation, the reference vector mi is more similar and closer to x. 

2.2  SOM on non-vector data 

The SOM is suitable for the n-dimensional vector dataset. But Kohonen (1996) had 

shown that any non-vector dataset with a defined distance measure or similarity can be 

mapped by the SOM. It is based on the use of batch-SOM training and the median 

associated with each neuron (Kohonen & Somervuo 1998, 2002). Afterward the online 

SOM algorithm for non-vector data such as symbol strings (Somervuo 2004), graphs 

(Günter & Bunke 2002), transactions (Flanagan 2003; Himberg et al. 2003; He et al. 

2005), time series (Hammer et al. 2005), and so on had been developed. 

The Symbol String Clustering Map (SCM) is an unsupervised clustering method 

for symbol string data (Flanagan 2003; Himberg et al. 2003). Symbol strings are 

composed of symbols. Like the SOM, the SCM has a lattice of nodes on a 2-D map. 

Each node of the SCM is associated with a symbol string and a weight vector. Each 

mi(s) 
mi(s+1) 

x(s) 

d 
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symbol of the node string is associated with one coefficient in the weight vector. 

Whenever an input symbol string is drawn from the dataset and fed to the SCM, the 

winner node, which has the maximum activation value, is found. Next, an adaptation 

step is followed. For each node, both of its node string and weight vector are adjusted 

based on the input symbol string, the winner node, the values of the learning rate and 

the kernel function at time t. As a result, the non-null nodes form the clusters and are 

separated by the null nodes on the map. Transactions are symbol strings if their items 

are considered as symbols, but SCM does not consider the concept hierarchy. 

In the paper of Günter and Bunke (2002), graphs can be clustered by the SOM. 

Distance between two graph g1 and g2 is defined as the edit distance, which is the 

minimal cost when a sequence of edit operations including substitution, deletion, and 

insertion are applied to g1 such that the edited graph g1 is isomorphic to the graph g2. 

Moreover, a weighted mean of g1 and g2 is defined as a graph g such that, for some α 

with 0≤α≤d(g1, g2), the following two equations hold: 

 d(g1, g)= α, (7) 

 d(g1, g2)= α+d(g, g2). (8) 

In this SOM model, graphs are directly used as the neuron’s model. Thus, 

whenever an input pattern, a graph x, chosen from the dataset, the BMU can be found 

among all of the neurons by the edit distance measure; and the graphs of the neurons 

around the neighborhood of the BMU can be adjusted via the above concept of the 

weighted mean. If y is the graph of a neuron in the neighborhood of the BMU and γ is 

the value of the neighborhood function, then the new graph of y after adjusting is 

determined by the following equations: 

 d(y, ynew)= γd(x, y), (9) 

 d(x, y)= d(x, ynew)+d(ynew , y). (10) 

That is, the graph ynew is the weighted mean of x and y. These two equations follow the 

equations (7) and (8) directly, and they are the same as the equations (5) and (6) in the 

SOM. This SOM model is used to cluster characters. 

A transaction can be considered as an 1-level tree if all its items are treated as the 

leaf nodes. Thus the above SOM model can be applied to transactional data. However, 

bias could occur when the non-normalized edit distance is applied to transactions.  
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3. Methodology 

In this section, an extended SOM model which can handle transactional data with a 

concept hierarchy is proposed. We call it SetSOM. Before the proposed SetSOM, a 

distance function defined on transactions and three tree operators are given.  

3.1  Preliminaries 

Let I={i1, i2, …, iM} be a set of M possible items. Let D be a transactional dataset. 

That is, D is a collection of transactions. We assume the size of D is N. Suppose t is a 

transaction of D. Then t is a set of distinct items of I, that is, t is a subset of I.  

Let H be a concept hierarchy of I. It means that H must be a rooted and labeled tree 

with all items of I as its leaves. The non-leaf nodes of H act as taxonomic roles of the 

items in I. The top-level non-leaf nodes are the main categories of I, and the higher level 

ones are those of subcategories of I. Hence we call the leaves in H as item nodes and 

the non-leaf nodes as category nodes. For convenience sake, the root node of H is 

labeled as r, and every node in H is considered to have a unique label. Moreover, the 

left-to-right order among the siblings of any category node in H is significant. A three 

levels concept hierarchy is depicted in Fig. 2. 

 

 

Figure 2： A three levels concept hierarchy. The nodes x, y, and z are the main 

categories; the nodes xis, yis, and zis are the subcategories; the ijs are the 

items. 

Let T be a subgraph of H. All the nodes and the edges in T must be in H. If T is a 

tree with the same root of H, T is called a concept tree which comes from H. T is 

ordered and labeled too. If a is a node of T, a value is given and called the growth value 

of a, denoted by )(ag
T

. The growth value is greater than zero and not greater than one. 

When 1)( =ag
T

, a is said to be fully grown in T. When 1)(0 << ag
T

, a is partially 

grown in T. In any concept tree T, only fully grown category nodes can have their child 
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nodes. If a is a category node in T, the child nodes of a in T must be also child nodes of 

a in H. If T contains item nodes of H, these nodes must be leaves of T. The weight of T, 

denoted by |T|, is the total growth values of all the nodes in T, that is, )(|| agT
TTa∈

Σ= . 

Based on the concept hierarchy in Fig. 2, an example of concept tree is shown in Fig. 

3(a). The nodes x, y, and y2 are fully grown, and the nodes x1 and i17 are partially grown. 

If all the item nodes of T are fully grown and exactly equal to those of the items in 

transaction t, we call T the corresponding transaction tree of t. If we have a transaction 

t={i1, i4, i17, i21}, then a transaction tree T with |T|=10, which corresponds to t, is 

depicted in Fig. 3(b).  

 

Figure 3： Examples of a concept tree and a transaction tree. (a) is a concept tree; (b) is 

a transaction tree T corresponding to a transaction t={i1, i4, i17, i21} with 

|T|=10. 

A concept tree, like the example in Fig. 3(a), can be represented as a class of 

transactions. Any transaction which has the item i17 and the items belonging to the 

subcategories x1 or y2 has a high possibility in the class of this concept tree. Besides, the 

transactions in the above class have a higher possibility in containing the items which 

belong to the subcategory y2 and a less possibility in containing the items which belong 

to the subcategory x1, since y2 is more fully grown than x1 in this concept tree. Concept 

trees will be used as the prototypes of neurons in our SOM model. 

3.2  Distance between transactions 

Before we have a distance function defined on transactions, a distance function 

defined on concept trees is first given. Here are some notations. For any tree T, ΨT(a|b) 

is denoted as a subtree rooted at the node a with b as its parent node, if no ambiguity, b 

can be ignored, and πT(b) is the set of all the child nodes of b. Based on the Jaccard’s 

coefficient (Lampinen and Oja 1992), a distance function of any two trees, T and U, 

with a common root node r is given as follows. 

i21 i17 i4 i1 

r r 

x1 

x y 

y2 

i17 

x y 

y3 y2 x1 

(a) (b) 



194 資訊管理學報 第十九卷 第一期 

 

 
)Wdiff()(Wintersect

)Wdiff(
 )(dist

T, UT, U

T, U
T, U

+

=  (11) 

where  

 
( ) ( ) ( ) ( ) ( ) ( )

Wdiff( , ) | ( )| | ( )| ( ( ), ( ))
T U U T T U

T U T U

a r r a r r a r r

T U Ψ a | r Ψ a | r d Ψ a | r Ψ a | r
π π π π π π∈ − ∈ − ∈ ∩

= + +∑ ∑ ∑ , (12) 

 
( ) ( )

| ( ) ( ) ( ( ) ( ))
Wintersect( , )

2
T U

T U T U

a r r

Ψ a | r | |Ψ a | r | d Ψ a | r ,Ψ a | r
T U

π π∈ ∩

+ −

= ∑ , (13) 

and 

 

( ( ) ( ))

( ) ( )   either ( ) or ( ) degenerates to node ,
    

dist( ( ) ( )) otherwise.

T U

T U T U

T U

d Ψ a | r ,Ψ a | r

Ψ a | r Ψ a | r Ψ a | r  Ψ a | r a

Ψ a | r ,Ψ a | r

⎧ −⎪
= ⎨

⎪⎩

 (14) 

Note that Wdiff(T, U) and Wintersect(T, U) are used to measure the mutual 

differences and the intersection between T and U, respectively. We explain these two 

functions in the next example. The function d(ΨT(a|r), ΨU(a|r)) is used to calculate the 

difference between the two subtrees ΨT(a|r) and ΨU(a|r). If either ΨT(a|r) or ΨU(a|rb) 

degenerates to a node a, we directly calculate their weight difference as their difference. 

Otherwise, we recursively use the dist(·,·) to calculate the distance between ΨT(a|r) and 

ΨU(a|r) as their difference. In the latter case, we tend to treat ΨT(a|r) and ΨU(a|r) are 

similar, since both of them are concept trees with a common fully grown root node a, 

and can be considered as two groups of relevant items under the same category a. Thus, 

we use distance function to measure their difference instead of using their weight 

difference. Usually, the weight difference between ΨT(a|r) and ΨU(a|r) are much bigger 

than the distance. 

 

 

Figure 4：Two concept trees and their first level subtrees. 

r 
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We further explain the distance function by an example in Fig. 4. From the point of 

view of the two root nodes, the subtree ΨT 

(b|r) is completely in T and not in U, vice 

versa the subtrees ΨU 

(c|r) and ΨU(d|r) are completely in U and not in T. ΨT 

(a|r) and 

ΨU(a|r) are two similar subtrees because all of the items in both of the two subtrees 

belong to the same category node a. However, differences may occur inside the two 

subtrees. Thus we recursively use the distance function to measure their differences. 

Therefore, by the definition of Wdiff(·,·), the total mutual differences between T and U 

are as follows:  

 Wdiff(T, U)=|ΨT(b| r)|+ |ΨU(c|r)|+|ΨU(d|r)|+dist(ΨT(a|r), ΨU(a|r)) (15) 

Again, from the two root nodes’ view, ΨT(a|r) and ΨU(a|r) are in common once their 

difference has been subtracted. So, by the definition of Wintersect(·,·), the intersection 

between T and U is calculated by the following average: 

 
2

))()((dist|)()(|
) ,Wintersec(

a|r,Ψa|rΨa|r|Ψ| a|rΨ
UT UTUT

−+
=  (16) 

Such a distance function defined on concept trees can measure the differences in 

their tree structures. Now, based on the above distance function defined on concept trees, 

we give a distance measure between any two transactions ti and tj as follows. 

 dist(ti, tj )=dist(Ti, Tj ) (17) 

where Ti and Tj are the corresponding transaction trees of ti and tj, respectively. It 

measures not only the differences between transactions in their items but also the 

differences between transactions in their trees structures. That is, based on the concept 

hierarchy H, the distance measure takes the relevancy between items into account.  

We demonstrate the characteristics of the distance function by the following 

example. Suppose there are four transactions t1={a}, t2={b}, t3={c}, and t4={a, c} 

whose items come from some concept hierarchy, and their corresponding transaction 

trees are depicted in Fig. 5, respectively. Then, we have dist(t1, t2)=1/8, dist(t1, t3)=1, 

dist(t2, t3)=1, and dist(t1, t4)=1/2 by using the above distance function. If the traditional 

Jaccard’s coefficient is applied, then the relationship of the items in the concept 

hierarchy is ignored, and we have dist(t1, t2)=1, dist(t1, t3)=1, dist(t2, t3)=1, and dist(t1, 

t4)=1/2. The similarity among t1, t2, t3, and t4 cannot be identified. 
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Figure 5：Transaction trees of t1, t2, t3 , and t4. 

3.3  Operators on concept trees  

In order to modify the concept trees in our SetSOM, we extend three set operators, 

union, intersection and difference, on concept trees. Let T and U be two concept trees of 

H. T∩ U and T∪U are denoted as the intersection and the union of T and U, 

respectively. T-U is denoted as the difference of T from U. Firstly, T∩ U is defined as 

the concept tree with nodes in both T and U. Let a be a node in T∩ U. We 

define ))(),(min()( agagag
UTUT

=
∩

. Next, T∪U is defined as the concept tree with 

nodes in T or U. Let b be a node in T∪U. The growth value of b is determined as 

follows.  
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The tree difference of T from U, T-U, is defined as follows. If a node c is in T and 

not in U, then c is in T-U, and its growth value is gT(c). If c is in both of T and U, and 

gT(c)>gU(c), then c is in T-U, and its growth value is gT(c)-gU(c). Otherwise, c is not in 

T-U. Thus, if c is a node in T-U, the growth value of c is determined as follows. 

 
⎩
⎨
⎧

>∈∈−

∉∈
=

− )()( and , ,)()(

 and )(
)(

.

cgcgUcTif ccgcg

UcTif ccg
cg

UTUT

T

UT

i

 (19) 

The result of T-U is no more a concept tree. It is possible that T-U could contain 

many subtrees of T. For example, if U is composed of only one root node r with fully 

grown, and T is a concept tree whose root node r has three fully grown child nodes, say, 
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w1, w2, and w3, then T-U would contain three subtrees of T whose root nodes are those 

three child nodes, w1, w2, and w3, of r in T. They are no longer concept trees.  

Let T and U be any two concept trees of H, then we have the following properties: 

(i) |||||| || UTUTTUUT ∩+−+−=∪  and (ii) |||| || TUTUT −+=∪ . Follow the 

definitions of the above three operators, the two properties can be proved.  

3.4  SetSOM and its algorithms 

3.4.1  Initialization phase 

The SetSOM is a self-organizing map whose neurons are arranged in a lattice on a 

two-dimensional map. The lattice can be rectangular or hexagonal. Instead of using 

reference vectors as the prototypes in the conventional SOM, the prototype of each 

neuron in the SetSOM is a concept tree of the concept hierarchy H. It is quite different 

from the other SOM models at this point. Thus, before learning from input patterns, 

each neuron in the SetSOM will be initially assigned a concept tree as its prototype. 

Those concept trees can be randomly generated based on the concept hierarchy H. For 

convenient sake, for each neuron, a transaction is randomly drawn from the dataset then 

its corresponding transaction tree is simply assigned as the neuron’s prototype. 

3.4.2  Training phase 

In this phase, the SetSOM learns from input patterns randomly and iteratively. The 

input patterns are the transactions from the dataset D. Once a transaction is randomly 

drawn from D, the SetSOM learns from it. The learning process is continued until some 

criterion is met. In our later experiments, criterions are usually predefined and fixed 

iteration numbers, but it is related to the number of the neurons on the map (Kohonen et 

al. 1996; Vesanto et al. 2000). 

The same as the traditional SOM models, there are two key steps whenever a 

transaction is given in this training phase. The first one is to find the best matching unit 

among all the neurons on the map. The second is to adapt the prototypes of the neurons 

which are in the neighborhood of the BMU. In the first step, suppose t is the transaction 

randomly chosen from the dataset D, and its corresponding transaction tree T is fed to 

the SetSOM. Then the BMU c can be found as follows. 

 ),(minarg
i

i

UTdistc = , (20) 

where Ui is the concept tree of the ith neuron in the SetSOM. That is, the BMU is the 
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neuron which has the smallest distance between its concept tree and the given 

transaction tree.  

In the second step, the neurons in the neighborhood of the BMU learn from the 

transaction t. The transaction tree of t is denoted as T(s) to emphasize the current time is 

at s. Those concept trees of the neurons in the neighborhood of the BMU are adjusted 

according to T(s) as well as the neighborhood function h(s). 

Let i be a neuron in the neighborhood of the BMU and Ui(s) be the concept tree of 

the neuron i at the time s. According to the adaptation mechanism of the conventional 

SOM, which we have described in our previous section, Ui(s) should be adjusted toward 

T(s) such that the distance between them is decreased. That is, if dsUsTdist
i

=))(),(( , 

the concept tree of the neuron i after modification, i.e., Ui(s+1), must satisfies the 

following two equations: 

 ))(1())1(),(( shdsUsTdist
cii

−⋅=+  (21) 

 )())1(),(( shdsUsUdist
ciii

⋅=+  (22) 

where hci(s) is the value of the neighborhood function at the time s. That 

is, )(shd
ci

⋅ should be the total adjustment from Ui(s) to Ui(s+1) such that Ui(s+1) is 

more similar and closer to the input transaction tree T(s). Nevertheless, It is difficult to 

have Ui(s+1) which satisfy both of the equations (21) and (22) especially when treating 

non-vector data. The similar case happens in the study of Günter and Bunke (2002). It 

can be proved that Ui(s+1) which satisfy both of the equations (21) and (22) is 

impossible, when the distance function is defined below. Owing to the limit in pages, 

we omit the proof. 

 
UT

TUUT
T, U

∪

−+−

= )(dist  (23) 

Next, we describe the way how we adjust the concept tree Ui(s) of the neuron i 

such that Ui(s+1) can get more similar to T(s) at time s. For convenient sake, the 

concept trees of Ui(s) and T(s) are simplified to Fig. 6(a) and 6(c), respectively. The 

areas filled with little dots in Fig. 6(a) and 6(c) are the common parts of Ui(s) and T(s). 

The area filled with horizontal lines in Fig. 6(a) represents the tree difference of Ui(s) 

from T(s), i.e., )()( sTsU
i

− . We call it the negative part of Ui(s), since we expect a 

fraction of this part will be pruned from Ui(s). The area filled with vertical lines in Fig. 



Extended Self-Organizing Map on Transactional Data 199 

 

6(c) represents the tree difference of T(s) from Ui(s), i.e., )()( sUsT
i

− . We call it the 

positive part of Ui(s) at this adaptation, since we expect a fraction of this part will grow 

up in Ui(s).  

 

 

Figure 6：Adaptation of the concept tree Ui(s) of neuron i when T(s) is given at time s. 

 

Therefore, a reasonable way to adjust the concept tree Ui(s) of the neuron i such 

that Ui(s) can get more similar and closer to T(s) is to prune a fraction of the negative 

part from Ui(s) and to grow a fraction of the positive part in Ui(s). Suppose the fraction 

which will grow up in Ui(s) takes a percentage h1 of the positive part and the fraction 

which will be pruned from Ui(s) takes a percentage h2 of the negative part. Fig. 6(b) 

represents the concept tree of the neuron i after adaptation.  

Let Wpos=|T(s)-Ui(s)| and Wneg =|Ui(s)-T(s)|. Once the percentages h1 and h2 are 

determined, Wpos×h1 of the weight of the positive part will grow in Ui(s) and Wneg×h2 of 

the weight of the negative part will be pruned from Ui(s). We call Wpos×h1 and Wneg×h2 

the positive and negative adjustment value, respectively.  

Within the positive part, there may contain many subtrees of T(s) with different 

weights. If Y is one of the subtrees with weight |Y|, then ∑=
−∈ )()( ||sUsTYpos i

YW . The 

leaves or nodes starting from the root node of Y will grow up in Ui(s). It is possible the 

root node of Y has partially grown in Ui(s). Totally a fractional weight, |Y|×h1, of Y will 

grow in Ui(s). Moreover, the parent node of the root node of Y is called the growing 

point of Y in Ui(s).  

Similarly, within the negative part, there may contain many subtrees of Ui(s) with 

different weights. If Y is one of the subtrees with weight |Y|, then ∑=
−∈ )()( ||sTsUYneg i

YW . 

The leaves or nodes of Y will be pruned from U. Totally, a fractional weight, |Y|×h2, of Y 

will be pruned from Ui(s).  

In Fig. 7, we illustrate the subtrees in the negative and the positive parts of a 
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concept tree Ui(s) when an input pattern T(s) is given. Suppose x1 is partially grown in 

Ui(s), and then the growing points are the nodes r and w1 in Ui(s), from where the 

subtrees rooted at w2, w3, x1, and x2 will grow. 

 

 

 

 

 

 

 

 

Figure 7：The subtrees in the negative and the positive part of a concept tree Ui(s) when 

an input pattern T(s) is given. (a) Ui(s) and the growing points, r and w1. (b) 

T(s). (c) The subtrees in the negative part. (d) The subtrees in the positive part. 

Since the node x1 in Ui(s) is partial grown, x1 is only partially in T(s)-Ui(s). 

So far, based on the adaptation mechanism we have described, the adapted concept 

tree gets similar and closer to the input pattern. However, It is difficult to have Ui(s+1) 

which satisfy both of the equations (21) and (22). Thus, we take h1=h2=hci(s) 

heuristically and simply. Although the incurable adaptation error could exist, Ui(s+1) 

gets far away from Ui(s), and Ui(s+1) gets closer to T(s). 

3.4.3 Adaptation algorithms of SetSOM 

Now the entire algorithm of the adaptation step is shown in Fig. 8. Just as we have 

mentioned above, a transaction tree T(s) and the BMU at time s are given as the inputs. 

At the beginning of the algorithm, the learning rate α(s) and the updating radius σ(s) are 

recalculated at this step s; and the location of BMU is determined on the map.  

Then for each neuron i in the neighborhood of BMU, its prototype, i.e., the concept 

tree Ui (s), of the neuron is modified based on the input pattern T(s) as well as the value 

of the neighborhood function hci(s). During the modification process, the positive and 

the negative parts are determining as well as the growing points. It is easy to find out 

the subtrees in both of the positive and the negative parts of Ui(s), when we traverse the 

trees nodes of Ui(s) and T(s) from their roots and recursively compare their child nodes. 
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PrototypeAdaptation(T, BMU, s)  

Input: Input pattern T, BMU, training time s 

Output: Updated prototypes of the neighboring neurons around BMU 

Recalculate α(s) and σ(s) such that they are monotonically decreasing with s;  

Let (x,y) be the location of the BMU in the map; 

Let N(x, y) be the neighborhood centered at (x, y) within a specified range, σ(s); 

For each neuron i in N(x, y) 

Let positive links the subtrees in T- Ui 

Let growPoints links the nodes in Ui that new branches will grow 

Let negative links the subtrees in Ui -T 

 Let (u,v) be the location of i in the map; 

Let r= dist( (u, v), (x, y) );    // Euclidean distance between i and BMU on the Map 

 Let h=α*exp(-(r*r)/(2*σ*σ) );  // the neighborhood function 

 Let h1 = h2= h; 

 Ui.ManySubtreesGrow( growingPoints, positive, h1); 

 Ui.ManySubtreesPrune( negative, h2); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8：Algorithm of prototype adaptation. 

Then by using the ManySubtreesGorw algorithm, which is depicted in Fig. 9, a 

fraction of the positive part grows up in Ui. Each subtree in the positive part will grow 

up under the OneSubtreeGrow algorithm, which is similar to the ManySubtreesGorw 

algorithm, so we omit it. Similarly, by using the ManySubtreesPrune algorithm, also 

depicted in Fig. 9, a fraction of the negative part is pruned from Ui. Each subtree in the 

negative part is pruned by the OneSubtreePrune algorithm, we omit it, too. 

 

   

Figure 9：Algorithm of ManySubtreesGrow and ManySubtreesPrune. 

ManySubtreesPrune(negative, h2) 

y=negative; 

while(y!=null) 

p=y.weight * h2; 

 OneSubtreePrune(y.root, p); 

 y=y.next; // next subtree in negative link 

 

ManySubtreesGrow(growingPoints, positive, h1) 

x=growingPoints; 

y=positive; 

while(y!=null) 

 g=y.weight * h1; 

 OneSubtreeGrow(x.root, y.root, g); 

 y=y.next; // next subtree in positive link 

 x=x.next; // next growing point in U 
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3.5  Evaluation of mapping and clustering quality 

3.5.1  Mapping quality 

Two measures are used to observe the mapping qualities: the trustworthiness and 

the continuity functions. When the nearest neighbors of an object in the mapped space 

are also close in the original data space, it is said the mapping is trustworthy 

(Vathy-Fogarassy & Abonyi 2009; Kaski et al. 2003; Venna & Kaski 2005). Let N be 

the number of the objects to be mapped, Uk(i) be the set of objects that are the k nearest 

neighbors of the data object i in the visualization map, but not in the original data space. 

The trustworthiness of the mapping can be calculated as follows. 

 ∑ ∑
= ∈
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where r(i,j) denotes the rank of the object j relative to i in data space. 

When objects near to each other in the data space are also close on the map, it is 

said the mapping is continuous (Vathy-Fogarassy & Abonyi 2009; Kaski et al. 2003; 

Venna & Kaski 2005). The measure of the continuity of a mapping is calculated as 

follows. 

 ∑ ∑
= ∈

−

−−

−=

N

i iVj k

kjis
kNNk

k
1 )(

)),((
)132(

2
1)(Continuity  (25) 

where s(i,j) is the rank of the data object j relative to i in the output space, and Vi(k) 

denotes the set of those data objects that are the k nearest neighbors of data object i in 

the original space, but not in the mapped space. The larger values of both of the 

trustworthiness and the continuity are better in mapping quality. 

3.5.2  Clustering quality 

We evaluated the clustering quality by the F measure and the weighted entropy. 

The F measure is defined as follows. 

 ),(max jiF
N

N
F

i
j

i∑=  (26) 

where F(i,j)=2P(i,j)R(i,j)/(P(i,j)+R(i,j)), P(i,j)=Nij/Nj, and R(i,j)=Nij/Ni, Ni is the number 

of objects belonging to class i, Nj is the number of objects belonging to cluster j, Nij is 
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the number of objects belonging to class i in cluster j. N is the total number of objects in 

dataset, P(i, j) is the precision of cluster j in class i, and R(i, j) is the recall of class i in 

cluster j. F(i, j) is the F measure of cluster j in class i. The larger F is better in clustering 

quality. The second measure of clustering quality is the weighted entropy defined as 

follows. 
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The smaller weighted entropy is better in clustering quality. 

4. Experiments 

We conducted four experiments to evaluate the different characteristics of the 

SetSOM. Synthetic datasets were used in the first three experiments to demonstrate the 

projecting ability of the SetSOM and its mapping quality. The first experiment is a 

robustness testing of the SetSOM. The second and the third ones are to demonstrate the 

properties of the topological preservation and the visualization effect of the SetSOM, 

besides, the mapping quality is observed. By using one real dataset, the fourth 

experiment was conducted to investigate the SetSOM in clustering performance 

preliminarily. Comparisons with the SOM and the SCM are performed in all of the 

experiments. 

The neurons of the three comparing models, SetSOM, SOM, and SCM, are all 

arranged in rectangular lattices in their own 2-D maps. The parameters setting of both 

the SetSOM and the SOM refer to the suggestions of the SOM_PAK (Kohonen et al. 

1996) and the SOM_Toolbox (Vesanto et al. 2000). The number of the neurons in a map 

is about N5 , where N is the number of data objects in a dataset.  

In the SetSOM and the SOM, the Gaussian function is used in the neighborhood 

function. The learning rate is of the form, α(s)=α(0)×(1.0–s/S), where the initial value 

α(0)=0.5, s is the time, and S is the total iteration times. The updating radius is of the 

form, σ(s)=1+(σ(0)–1)×(1.0–s/S) with σ(0) is about half of the width of the map. The 

number of training iterations is set to 10 times of the number of neurons. In the SCM, 

the Mexican hat is used as its neighborhood function according the author’s suggestion 

(Flanagan 2003). The Mexican hat is defined as follows. 
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where a=0.35 is a constant, determining the width of Mexican hat and b=2.0×s/S varies 

with time s. The learning rate is α(s)=0.25×S/(0. 5×S +s), and the value of the threshold 

is x(s)=0.2×s/S 

Concept hierarchies are used for the SetSOM in all of the following experiments, 

of course. In the SOM, only the item nodes in concept hierarchies are used, and 

transactions are needed to convert to binary vectors. For example, if a transaction has 

only the 5th, 9th, and 11th items which come from a concept hierarchy with 12 item 

nodes, then its corresponding binary vector is (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0). Anyway, 

both the SOM and the SCM ignore the information in concept hierarchies.  

4.1  Robustness testing experiment 

Since the amount of transactions is very tremendous in many applications, in this 

experiment, we test the robustness of the SetSOM. Before doing this experiment, a 

virtual retailer which has 100,000 products (items) is created. Suppose all of the 

products form a three levels concept hierarchy as follows. There are 20 main categories, 

50 subcategories per each main category, and 100 products per each subcategory. 

Three datasets, which have 10k, 50k, and 100k transactions, are created, 

respectively. All of the transactions are simulated by the following rules. Let T be the 

size of any transaction and X be a Poisson distribution with E(X)=14. Assume T=X+1. 

That is, once X is given, T is given. Then, for each transaction, there are T items drawn 

randomly from the 100,000 items without replacement Besides, E(T)=E(X)+1=15, that 

is, there are averagely 15 items for each transaction in this retailer. 

For each dataset, the three comparing models are executed respectively, and their 

execution times are recorded. In Fig. 10, the dataset with 10k transactions is mapped by 

the SetSOM. Each neuron with nonzero BMU count is displayed by a circle. The area of 

the circle is proportional to its own BMU count. The 10k transactions seem uniformly 

distribute on the 2-D map. This is what we expect. Besides, we compare the execution 

time of the three comparing models in the training phase with the three different 

datasets; the result is depicted in Fig. 11. It is obvious that the SetSOM outperforms 

both the SCM and the SOM. 
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4.2  Simulative library experiment 

In the following experiment, we observe the visualization and the mapping 

qualities of the SetSOM and compare with the other two models. A simulative college 

library which has 1,250 books is created. Suppose all of the books form a three levels 

concept hierarchy as follows. (1) Level-1 nodes: there are five main categories (level-1 

nodes) which are computer science (CS), mathematics (MA), physics (PH), biology 

(BI), and chemistry (CH). (2) Level-2 nodes: each main category has five subcategories 

(level-2 nodes), e.g., PH.1, PH.2, PH.3, PH.4, PH.5 are the five subcategories of the 

main category PH. (3) Level-3 nodes (leaves): each subcategory has 50 books (level-3 

nodes, or leaves), e.g., PH.1.1, …, PH.1.50 are books belonging to PH.1 subcategory. 

We simulated 2000 library checkout patterns, which come from four different 

classes of students. Each class of checkouts has its own distribution in checkout content; 

they are listed in table 1. Moreover, class I and II of checkouts are further divided into 

three and two subclasses, as shown in table 2 and 3, respectively. Totally, there are 

seven groups distributed differently in the library dataset. 

 

 

 

Figure 10：10k transactions of virtual 

retailer mapped by SetSOM 

on a 24x24 units. 

Figure 11：Comparison of SetSOM,  

SCM and SOM in training 

time for 10k, 50k and 100k 

transactions 
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Table 1：Simulative library dataset. 

Class # of checkouts Content per checkout Source 

I 600 
CS books: 80% 

MA books: 20% 
Computer science students 

II 500 

MA books: 70% 

CS books: 20% 

PH books: 10% 

Mathematics students 

III 500 

PH books: 80% 

MA books: 10% 

CH books: 10% 

Physics students 

IV 400 
BI books: 80% 

CH books: 20% 
Biology students 

Table 2：The three subclasses of class I in simulative library dataset. 

Content per checkout 
Subclass 

Under CS (80%) Under MA (20%) 
# of checkouts 

I.1 
CS.1: 90% 

CS.2: 10% 

MA.1: 90% 

MA.2: 10% 
250 

I.2 
CS.2: 90% 

CS.3: 10% 

MA.2: 90% 

MA.3: 10% 
200 

I.3 

CS.2: 10% 

CS.3: 10%, 

CS.4: 80% 

MA.2: 10% 

MA.3: 10% 

MA.4: 80% 

150 

Table 3：The two subclasses of class II in simulative library dataset. 

Content per checkout 
Subclass 

Under CS (20%) Under MA (70%) Under PH (10%) 
# of checkouts 

II.1 
CS.1: 80% 

CS.2: 20% 

MA.1: 80% 

MA.2: 20% 

PH.1: 80% 

PH.2: 20% 
300 

II.2 
CS.2: 20% 

CS.3: 80% 

MA.2: 20% 

MA.3: 80% 

PH.2: 20% 

PH.3: 80% 
200 

 

Each checkout of different classes is simulated by the following rules. Let T be the 

number of books in a checkout, and let X be a Poisson distribution with mean λ, i.e., 

λ=E[X]. Assume T=X+1, that is, T is determined by X. Besides, E[T] = λ+1. In our 

dataset, λ is set to nine. That is, in this simulative library, the average number of books 
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borrowed by students in each checkout is ten. Whenever the size of a checkout is 

determined, books in checkouts are decided by the checkout content distribution in 

different classes, which are listed in table 1, 2 and 3, respectively. For example, if a 

checkout belongs to class I.1, each book in this checkout has 72%, 8%, 18%, and 2% in 

probability from the subcategory CS.1, CS.2, MA.1, and MA.2, respectively. 

4.2.1  Experimental result  

Fig. 12 (a), (b) and (c) show the results of the library dataset mapped by the three 

comparing models, SetSOM, SCM, and SOM, respectively. Each map is displayed by a 

15 by 15 U-Matrix (Ultsch 2003) as its background. In U-Matrix, the gray level in each 

neural unit represents the average distance between its own prototype and the prototypes 

of its nearest neighboring units. The larger the distance is, the darker the gray color is. It 

is reasonable the units with higher similarity in their prototype will gather in some 

lighter gray area. Therefore, the units of darker gray form a boundary of the lighter gray 

areas. We expect the input transactional patterns with higher similarity will be projected 

into some lighter gray area. After displaying the U-Matrix, we draw circles for units 

which have nonzero BMU count in foreground. The area of each circle depends on the 

unit’s BMU count. We expect the input patterns with higher similarity will be projected 

into the same neuron or the neighboring neurons.  

 

 

(a)        (b)       (c)  

Figure 12：The mapping results of the three comparing models when using the 

simulative library dataset. (a) is the mapping results of the SetSOM, (b) is 

of the SCM, and (c) is of the SOM; each map has 15 by 15 units. 

In order to know the mapping quality in visualization, we randomly scatter the 
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input patterns with specific colors within their BMU’s circle. The colors of the input 

patterns are based on the classes to which they belong. Seven colors are assigned to the 

seven classes. In class I, the three subclasses of the checkouts are colored by red, green, 

and yellow, respectively. In class II, the two subclasses of the checkouts are colored by 

blue and magenta, respectively. The checkouts in class III and IV are colored by cyan 

and orange, respectively.  

It is obvious the SetSOM has a better visualization and mapping quality than the 

others. In Fig. 12(a), the checkouts which belong to the same class are gathered as a 

group or distributed as nearer neighbors, and the structure of the U-Matrix perfectly 

coincides with the structure of our testing dataset. It is easy and precise to separate the 

SetSOM units into different groups with the aid of the U-Matrix. In fact, the gaps 

among units are clear without the U-Matrix. Besides, when comparing with the other 

models, the SetSOM gathers the three subclasses of class I and the two subclasses of 

class II closely than the other classes. The SetSOM reflects the actual structure of the 

dataset on the map more precisely than the others. In Fig. 12(b), the SCM can not 

exactly map the same class of the checkouts together and the boundaries of its U-Matrix 

are not very clear. In Fig. 12(c), the SOM has the same problems as the SCM, and the 

checkouts tend to be projected all over the neurons on the map. 
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(a)        (b) 

Figure 13： Mapping qualities of the three comparing models when using the 

simulative library dataset as an input. (a) for trustworthiness and (b) for 

continuity 
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Fig. 13 shows the trustworthiness and the continuity values versus the number of 

neighbors, k, varying from 50 to 500 when the simulative library dataset is mapped by 

the three comparing models. It is obvious the SetSOM outperforms than the others. All 

the values of the trustworthiness and the continuity of the SetSOM are greater than 0.80 

and better than the others. That is, the neighborhood preservation and the local and 

global mapping quality of the SetSOM are better than the others. 

4.3  Real dataset: articles of ACM proceedings  

The real transactional dataset was extracted from the articles of five ACM 

proceedings including SIGIR, SIGMOD, SIGCHI, SIGMM, and SIGCOMM between 

2000 and 2009. It is reasonable to consider each of the five ACM proceedings as a 

different class of articles. Based on the content, each article had been assigned some 

classification codes, which are considered as the transaction of the article. There are at 

least one primary classification code and a few additional classification codes. For 

example, “Comprehensive query-dependent fusion using regression-on-folksonomies: a 

case study of multimodal music search” (Zhang et al. 2009) is an article from the 

SIGMM, it contains three codes: {H.3.3.Query formulation, H.3.3.Search process, 

H.5.5.System}. For each article, the classification codes and its proceeding’s name were 

extracted and saved. If an article contains only one code, we ignored it. At last, 3,357 

transactions were collected. Table 4 gives the description of the real dataset in detail. All 

of the codes come from the ACM Computing Classification System (CCS); it is a 

four-level concept hierarchy. All the classification codes of the ACM articles and the 

CCS can be collected and downloaded from the ACM digital library.  

Table 4：Articles of the five ACM proceedings 

Proceeding # of articles Min. # of codes Max. # of codes 

SIGIR 689 2 10 

SIGMOD 537 2 7 

SIGCOMM 158 2 6 

SIGCHI 920 2 18 

SIGMM 1053 2 19 

The mapping results of the articles by the three comparing models SetSOM, SCM, 

and SOM are depicted in Fig. 14(a), (b) and (c), respectively. Each map has 18 by 18 
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units and a U-Matrix displayed in the background. The boundaries are clear in the 

SetSOM. With the aid of the U-Matrix, we can separate the units into different groups in 

the SetSOM. Each article is mapped into its BMU with a specific color. Five different 

colors, red, green, yellow, blue, and magenta are assigned to SIGIR, SIGMOD, 

SIGCOMM, SIGMM, and SIGCHI, respectively. In the SetSOM, most of the articles 

belonging to the different proceedings can be gathered into different units. However, 

there exist many small units scattering over the map of the SetSOM. Moreover, quit a 

few articles of the SIGMM colored by magenta are mixed with the articles of the other 

proceedings in many units. This phenomenon emerges in both of the comparing models. 

In order to analyze this phenomenon, we removed the articles of SIGMM in the dataset 

and applied the SetSOM on the remained dataset. Fig. 15 depicts the result. Articles 

belonging to the different proceedings are almost projected into different units, although 

the units with the same color are not close together. It is reasonable to infer the topics in 

the SIGMM are more diverse than the other proceedings. Moreover, the topics in the 

SIGMM and the topics in the other proceedings are overlapping in some extent. 

 

  

(a)        (b)        (c) 

Figure 14： The mapping results of the ACM proceedings’ articles. (a) is of the 

SetSOM, (b) is of the SCM, and (c) is of the SOM. Each map has 18 by 18 

units. 
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Figure 15： The mapping results of the ACM proceedings’ articles by the SetSOM, 

when the articles of the SIGMM are removed. 

In order to validate the mapping result (Fig. 14(a)) of the SetSOM further, six of 

the neurons which locate at (4, 3), (10, 10), (4, 5), (12, 3), (11, 5), and (7, 8) in Fig. 14(a) 

were used to validate the projection result and to illustrate the differences of the articles 

among the neurons and the similarity of the articles inside the neurons. Note that (0, 0) 

is located at the upper left corner on the map. The first three neurons are the top three in 

BMU count; there are about 16.7%, 16.6%, and 7.0% of the articles mapped into the 

three neurons, respectively. The others are the top three in entropy value; there are about 

2.7%, 0.2%, and 0.4% of the articles mapped into the three neurons, respectively. 

For each of the six neurons, the classification codes of the articles inside the 

neuron were counted, and then the frequency distribution of the classification codes was 

drawn as a histogram. Fig. 16(a)-(f) depict the frequency distributions of the six neurons, 

respectively. All of the classification codes were only counted to the level-2 codes at 

most, for example, the three codes, H.2, H.2.1, and H.2.8.Data Mining, are all counted 

as the level-2 classification code, H.2. Furthermore, the classification codes were also 

counted according to what proceedings the articles belong to. Colors and styles in the 

histograms show the different proceedings. 

In order to compare the distributions easily, the classification codes in the X-axes 

of Fig. 16(a), (b) and (c) are the same, and similarly in Fig. 16(d), (e), and (f). It is clear 

that the six neurons have very different kinds of distributions of their classification 

codes, that is, among the six neurons the types of their articles are quite different.  

In Fig. 16(a) to (c), corresponding to the neurons (4, 3), (10, 10), and (4, 5), most 

of the classification codes concentrate on one level-2 classification code, that is, the 
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articles inside each of the three neurons must have high relevancy. We inspected the 

articles inside the neuron (4, 3), we found “information search, retrieval, indexing” is 

the main topic of the articles inside this neuron. Besides, 63.8% of the articles in neuron 

(4, 3) come from SIGIR; 78.6% of the articles in neuron (10, 10) come from SIGCHI; 

and 78.4% of the articles in neuron (4, 5) come from SIGMOD. However, the articles of 

SIGMM emerge in all these neurons. The neuron (4, 3) was inspected again; we found 

that those articles not coming from SIGIR are also relevant to information retrieval. For 

instance, the article “Comprehensive query-dependent fusion using 

regression-on-folksonomies: a case study of multimodal music search” (Zhang et al. 

2009), which come from SIGMM, is obviously related to multimedia as well as 

information search and retrieval. Thus, it is reasonable this article is projected in this 

neuron. 
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(e) )                   (f) )                   (g) 

Figure 16： The frequency distributions of the classification codes of the selected 

neurons. (a), (b), (c), (d), (e), and (f) are the histograms of the neurons (4, 

3), (10, 10), (4, 5), (12, 3), (11, 5), and (7, 8), respectively. 

In Fig. 16(d) to (f), corresponding to the neurons (12, 3), (11, 5), and (7, 8), it is 

easy to find articles in these neurons come from diverse proceedings; this is why their 

entropy values are high. However, most of the articles have at least two classification 
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codes which are different in both of level-1 and level-2. For example, in the neuron (12, 

3), C.2 and H.5 are the most common combination that the articles have. C.2 also 

combines with other H.1, H.2, H.3, or H.4. We found “Networked information systems’ 

interfaces, retrieval, or database” is the main topic of the articles in this neuron. That is, 

high relevant articles are grouped in this neuron, though they may come from different 

proceedings. 

Furthermore, we applied the K-Means to cluster the units with nonzero BMU count 

in the above four trained maps in Fig. 14 and 15 in order to inspect the clustering 

quality of the SetSOM preliminarily. The number of clusters was set from four to ten. 

We evaluated the clustering quality by the F measure and the weighted entropy. The F 

measures and the weighted entropy values of the four maps are depicted in Fig. 17(a) 

and 17(b), respectively. We found the SetSOM has a higher clustering quality than the 

other models, since its F measures are all higher than the other two models, and the 

weighted entropy values are all less than the others. Moreover, we found the clustering 

quality of the SetSOM map with SIGMM removed is much higher than the SetSOM 

with the original dataset. It coincides with the above inference about the SIGMM. 
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(a)        (b) 

Figure 17： (a) the F measures and (b) the entropy of clustering the SetSOM, SCM, 

SOM and the SetSOM without SIGMM by K-Means, K=4, …, 10. 

5. Conclusions and future works 

In this paper, we convert transactional data to tree structures and devise a distance 

function for the transactional data when an accompanied concept hierarchy exists. 

Based on the structure of concept hierarchies, the distance function takes the relevancy 

of items in transactions into account. Thanks to the tree-structured transactions and the 
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distance function, an extended SOM, the SetSOM, has been proposed to inspect the 

topological order of the transactional data. Via the adaptation method, imitating from 

trees growing in nature, the SetSOM has its good qualities in projecting transactional 

data into a 2-D map as well as in visualizing the inner structure of transactional data. 

From the experiments in the synthetic and the real datasets, the SetSOM outperforms 

other SOM models in visualization, mapping and clustering qualities. Our future work 

is to extend our model for transactional data no matter its concept hierarchy exists or not 

and to develop a clustering method for the trained SetSOM neurons in order to get a 

better clustering quality in transactional data.  
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