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Abstract
Predicting productivity and efficiency during the transfer of input to output is a key issue 

in many manufacturing and service operation applications. Operation research and econometrics 

acknowledge that efficiency analysis is a major research issue. Data envelopment analysis 

(DEA) has substantially reshaped the result of information economics in previous years. 

However, the extent to which asymmetric information is relevant for efficiency prediction has 

rarely been sought empirically. Efficiency prediction plays a crucial role in many state-of-the-

art applications and planning. Forecasting methodologies that can accurately predict efficiency 

scores can help in strategic decision-making. This study focuses on fuzzy piecewise auto-

regression and the catching-up efficiency index (CIE), which supports efficiency prediction. In 

this study, two regression models were formulated by utilizing data from commercial banks in 

Taiwan from 2002 to 2005. These models were used to validate banking efficiency scores for 

2005 and 2006, and to predict the banking efficiency scores for 2007. The results of a thorough 

computational analysis provide a range indicating the prediction value for each bank based on 

fuzzy regression characteristics.

Key words : �Data Eenvelopment Analysis (DEA), Fuzzy Piecewise Auto-Regression, 

Catching-up Efficiency Index (CIE), Banking Performances.
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摘要

轉換為輸入與輸出關係來預測生產力與效率已廣範應用於許多生產與服務作業管理

領域，因此，作業研究與計量經濟等領域普遍認為效率分析與預測為其主要的研究議

題。在過去幾年，當資料包絡分析已經成功形塑資訊經濟議題時，效率預測卻顯少有學

者進行研究。效率預測在當今許多規畫應用中扮演著關鍵角色。一個好的預測方法可以

有效輔助決策者做效率預測。因此，不同於過去傳統效率預測方法，本研究採用模糊分

段自我迴歸方法與效率追趕指標去處理效率預測問題。藉由可能性與必然性回歸模式應

用於台灣22 家商業銀行效率預測，透過 2002 到 2005 年三期資料去驗證2005年到2006
年效率值，並且以此為基礎去預測 2007 年各銀行的效率。基於過去各商業銀行的績效

表現，透過這個分析架構，我們可以提供給各銀行未來效率值可能區間。經由指示性研

究發現與比較，透過模糊分段自我迴歸與效率追趕指標處理，可以有效預測相對效率議

題。

關鍵字：��資料包絡分析 (DEA)、  模糊分段自我迴歸、效率追趕指標  (CIE)、
銀行績效評估
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1. INTRODUCTION

Forecast methodologies for efficiency are rarely applied to predict productivity and 
efficiency for real-world applications, although an analytic framework has been proposed for 
business functions such as production, marketing, research and development, and finance. Most 
existing forecast methodologies focused on predicting output from input (Troutt et al. 2005). 
However, when forecasting methodology is applied to relative efficiency, selection data become 
more difficult because earlier approaches used absolute historical data or efficiency scores. As 
such, conventional forecasting approaches cannot be used for relative concepts such as time 
series of efficiency. 

There are two competing paradigms on efficiency analysis. The first uses mathematical 
programming techniques, such as data envelopment analysis (DEA), which are popular in 
operation research. The other employs the regression approach, such as stochastic frontier 
analysis (SFA), which is widely accepted in econometrics. These two methodologies have 
specific characteristics and limitations. DEA does not require explicit assumptions regarding 
the function structure of the stochastic frontier. SFA imposes an explicit, possibly overly 
restrictive, frontier function on the models. DEA is based on non-parametric approaches, while 
SFA is based on parametric ones. Therefore, DEA, unlike SFA, cannot provide mechanisms for 
predictions; however, it is difficult to define parametric and frontier functions in SFA. 

To accomplish the efficiency prediction objective, a new hybrid approach comprising 
catching-up efficiency index (CIE) and fuzzy piecewise auto-regression analyses is proposed 
to predict efficiency and reinforce the prediction ability of DEA. CIE is a measure of technical 
efficiency change during the analyzed period (catching-up effect or movement toward the 
frontier). The CIE index ignores input-versus-output relationships. The fuzzy piecewise 
regression analysis developed by Yu et al. (Yu et al. 1999; Yu et al. 2001) provides information 
to understand the dynamics of variable data and forecast efficiency when two specific regression 
estimation models are used simultaneously. A two-stage process is used to predict efficiency. 
The CIE is calculated with efficiency evaluation in the first stage, while validation and/or 
prediction are done in the second stage. In the first stage, DEA techniques are used to evaluate 
the efficiency scores for some periods and transfer efficiency scores to CIE indices. In the 
second stage, fuzzy piecewise auto-piecewise regression is followed to calculate the CIE index 
data and forecast the value, which falls into two ranges. The first is the possibility estimation 
model, which suggests that predicted values should be included in the regression ranges; the 
second is the necessity estimation model, which proposes that the predicted values should be 
excluded in the regression ranges.
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The rest of the paper is organized as follows. Section 2 reviews the related literature. 
Section 3 describes the problem and presents the proposed theoretical framework. Section 4 
demonstrates the results of our study for the data from 22 Taiwanese commercial banks and 
offers our conclusions and suggestions for future research. The conclusion and future work are 
given in Section 5. 

2. LITERATURE REVIEW

The DEA approach is suitable for analyzing institutional data such as those from the 
government (Yunos & Hawdon 1997; Hsu & Hsueh 2009), schools (Soteriou et al. 1998; Tyagi 
et al. 2009), hospitals (Chilingerian & Sherman 1990; Ozcan 1995), and banks (Chen & Yeh 
2000). While it can be suitable in evaluating efficiency, it is not applicable for prediction and/
or forecast. Traditional DEA studies focus on “one-shot state＂ efficiency analyses. Few 
approaches (e.g., SFA) predict efficiency either by modeling the production relationship or 
by using soft computing techniques. However, modeling the production/frontier function or 
framing an analyzed environment structure has many limitations and is difficult to achieve. 

2.1 Efficiency Predictions

Generally, econometricians tend to favor regression-based or sophistication approaches; 
management scientists favor DEA approaches to evaluate performance issues (Thanassoulis 
1993; Bowlin et al. 1985; Schmidt 1986; Cubbin & Zamani 1996). Thanassoulis (Thanassoulis 
1993) found that DEA is suitable in regression analysis. Meanwhile, Schmidt (Schmidt 1986) 
proposed a major drawback of DEA is the lack of a statistical basis. It is difficult to decide 
on either the relevance or the credibility of these conflicting results, and the fundamental 
difference between regression analysis and DEA is not clearly understood. To help understand 
DEA characteristics, two main advantages need to be demonstrated: (1) DEA is based on ratio 
concepts and not on absolute input versus output relationships; and (2) the efficiency score is 
relative to the frontier, and not on anyone ś own scores (Golany & Roll 1989).

Ratio provides scale invariance characteristics such that they can ignore scale influences 
on the performance result. Therefore, they can be extrapolated for evaluation. Despite some 
limitations, many techniques, such as key business performance measurements, are applied for 
ratio analysis to evaluate income and balance sheet financial statements simultaneously. Each 
projected metric in ratio analysis has its own unique goal value tied to the business strategic 
vision. For example, financial ratio analysis is used for performance evaluation (Caves et al. 
1982; Megginson et al. 1994); it simultaneously measures one input and one output. Challenges 
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in financial ratio analysis include the lack of accredited financial ratio models and weight 
selection. Therefore, for more flexible analysis, rules on ratio analysis may be constructed 
using complicated computations by higher-order equation. DEA can work with sample rules 
(i.e., input/output) and allow for the evaluation of multiple outputs and inputs (Golany & Roll 
1989; Caves et al. 1982). Ratio analysis needs complex data requirements to make it suitable for 
evaluation, unlike in DEA, which does not need a large sample size (Golany & Roll 1989). 

Ratio analysis refocuses the resources to converge on“the goal＂(i.e., efficiency will be 1) 
and does not reflect actual scenarios (i.e., compared with other decision-making units or DMUs). 
DEA is a relative concept in that specific DMU efficiency is dependent on best practices 
or frontiers, not on itself. As such, conventional evaluation techniques cannot fully fit the 
requirement from the inherent characteristics of DEA. Under such conditions, if conventional 
approaches need to be implemented, they may need to combine many relationship constraints to 
satisfy such characteristics. 

DEA can simultaneously deal with radio and ordinal scale data, but regression analysis 
is hard to implement. DEA approaches lack requirements on assumptions of any pre-specified 
functional form of the production function, and tend to avoid the problem of parameter measures 
(Golany & Roll 1989). 

Unfortunately, these advantages also cause disadvantages on the lack of frontier functions 
of DEA. The absence of requirements on assumptions of any pre-specified functional form of 
the production/frontier function implies that a major drawback of DEA in forecasting stems 
from the lack of prediction capability. This is apparent in other mathematical models, such as 
in regression analysis and prediction approaches. Models should be able to estimate efficiency 
predictions over time. The efficiency prediction of DEA does not have such capability because 
the DEA model cannot simultaneously handle both negative values (e.g., data representing 
decay) in the data set and a frontier shift over time (Cook & Seiford 2009). 

Some studies enhanced the predicting efficiency of DEA by combining it with other 
predicting techniques. Productivity change, explained in terms of technical change recently 
became widely accepted in predicting efficiency change. It can be simplified, to some degree, to 
become an uncomplicated forecasting functionality (frontier shift). The Malmquist index, which 
is used to predict productivity change, plays an import role in supporting such discussion; it 
was first introduced by Caves et al. (Caves et al. 1982) in productivity change. Färe et al. (Färe 
et al. 1989) decomposed productivity change into efficiency change and technical change, and 
constructed a non-parametric mathematical programming model to arrive at a solution. Caves 
et al. (Caves et al. 1982) and Färe et al. (Färe et al. 1989) showed that under certain conditions, 
the Malmquist index approximated the Törnqvist (Törnqvist 1936) and Fisher indices (Caves et 
al. 1982; Fisher 1922), which are easy to compute and are generally accurate, but may be biased 
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to estimate productivity in the presence of inefficiency (Coelli et al.1998; Färe et al. 1995). 
However, the Malmquist index may not provide the complete picture because it only considers 
productivity change in two periods, although it can be extended to multiple periods through 
index multiplication. The Malmquist index is based on only two adjacent periods and may 
ignore past performances over more than two previous periods. 

Sueyoshi (Sueyoshi 2000) proposed stochastic DEA, a model formulated by chance 
constraint programming and estimated using the program evaluation and review technique or 
critical path method, for a restructuring strategy applied by the Japanese Petroleum Company. 
He used stochastic efficiency (or“aspiration level＂) and conventional efficiency (or“risk 
criterion＂) to decide future efficiency. However, he made several assumptions on the stochastic 
variables of output for computation conveniences, and the normal distribution is assumed for 
a stochastic variable when conducting a statistical test. Moreover, stochastic DEA predicts 
efficiency based on data from only one previous period; thus, its prediction ability relies heavily 
on its required assumptions (e.g., error terms standard deviation are equal to zero). 

Unlike Sueyoshi (Sueyoshi 2000), Kao and Liu (Kao & Liu 2004) introduced fuzzy 
concepts to forecast efficiency based on uncertain data represented in a range instead of a single 
value. The result of the prediction is presented as a range. They adapted fuzzy concepts in DEA, 
relaxed the assumptions of Sueyoshi (Sueyoshi 2000) on the error term variances of output 
variables (equal to zero), and assumed the output probability as beta distribution. Meanwhile, 
similar to the model of Sueyoshi (Sueyoshi 2000), the model of Kao and Liu (Kao & Liu 2004) 
only considers a single state; it does not base its predictions on past performances of DMU. The 
model treats uncertainty data evaluation rather than forecasting. 

Yeh et al. (Yeh et al. 2010) proposed a novel model to integrate rough set theory (RST) 
with support vector machine (SVM) techniques to increase the accuracy of predicting business 
failure. In their model, DEA is employed to evaluate input/output efficiency, remove redundant 
attributes in an RST approach, and reduce the number of independent variables without losing 
important information. They used such information as a preprocessor to improve the accuracy of 
business failure prediction through SVM.

Wu et al. (Wu et al. 2006) integrated DEA and neural networks (NNs) to examine/
forecast the relative efficiency of each branch office of Canadian banks. Tsai (Tsai et al. 2009) 
constructed the consumer loan default prediction model by conducting DEA-discriminate 
analysis (DA) and NNs. However, their model needs longer computing time and larger 
computing resources. It classifies data into two patterns during the training phases: good 
examples (positive data) and failed examples (negative data). These methods provide regression 
results determined either by structure error minimization (Yeh et al. 2010) or by empirical error 
minimization (Wu et al. 2006; Tsai et al. 2009). However, if a specific DMU outperforms its 
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previous performances, this specific DMU may be viewed as an outlier, and its performance will 
be ignored in these two models. 

Edirisinghe and Zhang (Edirisinghe & Zhang 2007) proposed a complicated multi-
step heuristic algorithm with random sampling and local search. It automatically selects a 
combination of inputs and outputs, in which the emerging DEA measure of financial strength 
is maximally correlated with stock performance. They generated a relative financial strength 
indicator, and demonstrated it to be predictive of stock returns. The major contribution of their 
method is flexibility and automation in selecting input and output parameters to maximize the 
predictive ability of emerging DEA estimation on stock performance. Although this approach 
uncovered the black box of the forecasting mechanize (e.g., NNs), it is difficult for this approach 
to decide the “suitable＂ solution beforehand; it easily falls into the local solution.

Efficiency evaluation through DEA has been widely applied in numerous empirical cases. 
However, it does not determine the extent to which asymmetric information is relevant for 
efficiency prediction, which has been rarely questioned empirically. Previous approaches in 
efficiency prediction did not account for the appropriate forecasting method and prediction 
variables, and consequently suffered from influences of variable variance (e.g., Sueyoshi 2000), 
computing resource/efficiency (e.g., Edirisinghe & Zhang 2007; Yeh et al. 2010), and data 
challenge (e.g., Malmquist index extending to forecasting problem). This study proposes a 
model to solve efficiency prediction by using fuzzy piecewise auto-regression and the catching-
up index, as developed by Yu et al. (Yu et al. 1999; Yu et al. 2001). The efficiency forecasting of 
the commercial bank was also reviewed, after which pertinent inputs and outputs were applied 
in our study.

2.2 Commercial Bank Evaluation

The banking sector, based on the applications of Miller and Noulas (1996), is regarded 
as an intermediary to bank transfers or deposits, even in the investment market. This approach 
reflects the way of evaluating the efficiency of commercial banks, which takes commercial 
banks as entities that use labor and capital to transform deposits into loans and securities. For 
the intermediation approach, three inputs and outputs each are chosen for each commercial 
bank. We used data such as amount of money deposited, employment expenditures, and banking 
assets as inputs. The amount of loans, investments, and commission revenue of loans were used 
as outputs to evaluate the performances of commercial banks. Table 1 summarizes the measures 
used as inputs and outputs of the application and reference papers.
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Table 1: Measures of Inputs and Outputs of the Taiwan Commercial Banks

Dimension Measures References

Inputs

Amount of money deposited Yue(1992) ;Lin(2002) ; Tortosa-
Ausina (2003)

Employment expenditures
Ausina (2003)
Barr et al.(2002);Haslem et 
al.(1999); Grabowski et al.(1994)

Banking assets Grabowski et al.(1994) ;Lin(2002) 
Barr et al.(2002)

Outputs

Amount of loans

Yue(1992);Lin(2002);Kao et al. 
(2004)
Tortosa-Ausina (2003); Grabowski 
et al.(1994)

Investments Miller & Noulas (1996);Haslem et 
al.(1999)

Commission revenue of loans
Yue(1992) ;Kao et al. (2004)
Barr et al.(2002); Tortosa-Ausina 
(2003); Grabowski et al.(1994)

3. MODELING AND FORMULATION

This study proposes a forecasting method comprising fuzzy piecewise auto-regression and 
CIE to predict efficiency and provide help in strategic decision making. This section introduces 
the modeling concepts used for efficiency prediction/forecasting, including those focusing on 
fuzzy piecewise regression and catching-up index. 

The methodologies are described as follows. First, any measurement technique of DEA can 
evaluate the efficiency performance of each DMU in each period. As such, the efficiency score 
of each DMU at each period will be computed. To calculate the efficiency score improvement 
or decay, we determine the catching-up index of two adjacent periods. If the CIE of a specific 
DMU is larger than 1, it represents the improvement of the specific DMU´s efficiency at the 
calculation period compared with the base period. Otherwise, it represents the decay of the 
specific DMU efficiency performance. Afterward, the CIE of each DMU in these periods will 
be forecast based on past CIE efficiency performance. These CIE data sets will be the inputs 
of the fuzzy piecewise auto-regression. Fuzzy piecewise auto-regression will find two ranges 
for the future forecast by using two specific regression models for each DMU. The possibility 
estimation model suggests that the predicted values should be included in the regression ranges. 
The necessity estimation model proposes that predicted values should be excluded in the 
regression ranges. After calculating these two ranges from these two regression models, we can 
obtain four CIE coefficients within the two ranges for each DMU. Using the four coefficients of 
each DMU, we can forecast the efficiency performance for each DMU for future periods. 
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3.1 Notations

Following the previous description, the proposed approach can be implemented in four 
phases. In the first phase, DEA is used to evaluate the efficiency score (e.g., to vest amount 
of deposits (input) to produce investment (output)) of each DMU in each period. The second 
phase involves applying the efficiency score of each DMU to calculate the catching-up index. 
The third phase builds two regression models using fuzzy piecewise/non-piecewise auto-
regression, while the fourth phase focuses on validating the calculations and forecasting, which 
were applied in the regression model of the third phase. Table 2 shows the notations used in the 
proposed model.

Table 2: Description of Notations

Variable /Notation Definition/Item
Number of DMUs.
Number of periods.
Number of change points.
Number of input variables.
Number of output variables.
Vector of a-th specific input variables of the  j-th DMU at  t-th  period. 
The b-th specific outputs variables of the  j-th  DMU at all  t-th   period.
Indexes for DMUs.
Indexes for DMUs.
Indexes for periods.
Indexes for input variables.
Indexes for output variables.
Indexes for change points.
Input efficiency scores of  j-th DMU at  t-th period.
Output efficiency scores of  j-th DMU at  t-th period.
Overall efficiency scores of j-th  DMU at t-th  period.
Vector for projecting j-th  DMU at t-th  period. 
Catching-up index s of j-th  DMU at t-th  period and t-1 period. 
The upper bound of possibility regression prediction CIE values of j-th DMU after fuzzy 
piecewise regression is completed.
The lower bound of possibility regression prediction CIE values of j-th DMU after fuzzy 
piecewise regression is completed. 
The upper bound of necessity regression prediction CIE values of j-th DMU after fuzzy 
piecewise regression is completed. 
The lower bound of necessity regression prediction CIE values of j-th DMU after fuzzy 
piecewise regression is completed. 
The upper bound of possibility regression prediction t-th period ś efficiency values of  j-th 
DMU. 
The lower bound of possibility regression prediction  period ś t-th efficiency values of j-th  
DMU. 
The upper bound of necessity regression prediction  period ś t-th efficiency values of j-th 
DMU. 
The lower bound of necessity regression prediction  period ś t-th efficiency values of j-th 
DMU. 
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3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure)

The graphic hyperbolic measure for the introduced proposition is illustrated in this study, in 
which any measurement technique of DEA can evaluate efficiency performance (Zofío & Lovell 
2001). This concept was updated in research conducted by Färe et al. (Färe et al., 1989), who 
introduced the graph hyperbolic measure. Based on the notations in Section 3.1, assuming there 

are T periods, N DMUs, with each DMU ( DMUj,

U
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L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

) with

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

input (

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

) in t period 
(

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

) and

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

output (

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

) in t period, the technology can then be described generally by 
the output sets, as shown by Model (1).

                                                                                                                                       (1)

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

where (

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

) represents r-th DMU, a-th input, and b-th output in t-th period. The 
value

U
jρ  

The upper bound of possibility regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jρ  

The lower bound of possibility regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

U
jπ  

The upper bound of necessity regression prediction CIE values of 
 DMU after fuzzy piecewise regression is completed. j th−

L
jπ  

The lower bound of necessity regression prediction CIE values of 
j th−  DMU after fuzzy piecewise regression is completed. 

( )
,
U

j tξ  
The upper bound of possibility regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
U

j tξ  
The lower bound of possibility regression prediction  period’s t th−
efficiency values of j th−  DMU. 

( )
,
U

j tψ  
The upper bound of necessity regression prediction  period’s 
efficiency values of 

t th−
j th−  DMU. 

( )
,
L

j tψ  
The lower bound of necessity regression prediction  period’s t th−
efficiency values of j th−  DMU. 

 
3.2 Phase I: Efficiency Evaluations (Graphic Hyperbolic Measure) 
 

The graphic hyperbolic measure for the introduced proposition is illustrated in 
this study, in which any measurement technique of DEA can evaluate efficiency 
performance (Zofío & Lovell 2001). This concept was updated in research conducted 
by Färe et al. (Färe et al., 1989), who introduced the graph hyperbolic measure. Based 
on the notations in Section 3.1, assuming there are  periods,  DMUs, with each 

DMU (

T N

DMU j , where Nj R+∈ ) with  input (( )t
ajX ana R+∈ ) in  period ( ) and 

 output (

t Tt R+∈

( )t
bjY bnb R+∈ ) in  period, the technology can then be described generally by 

the output sets, as shown by Model (1). 

t

( ) ( ) ( ) ( ) ( ) ( )

1

( ) ( ) ( )

1

( )

1

( ) {( , ) : ,     1,..., ,

                                  ,   1..., ,

                                  1,

                       

j

N
t t t t t t

bj br b
j

N
t t t

j aj ar a
j

N
t

j
j

x x y Y Y b b

X X a n

λ

λ

λ

=

=

=

= ≥ =

≤ =

=

∑

∑

∑

P

( )           0,        1,...., , 1,..., }t
j j N t Tλ ≥ = =

     (1) 

where ( ( ) ( ),t
ar br

tX Y ) represents r th−  DMU, a-th input, and b-th output in t  

period. The value 

th−

( )t
jλ  is the intensity variable to contract or expand the individually 

observed activities of  DMU to construct the convex combinations of the j th−

 is the intensity variable to contract or expand the individually observed activities of  
j-th DMU to construct the convex combinations of the observed input and output in t-th period. 
Model (1) is assumed closed and bounded, satisfying the conditions of the strong disposability 
of the desirable output and input. The inequality constraints in Model (1) on input and output 
reflect that output and input are freely disposable. The graphic hyperbolic measure based on the 
definitions set by Färe et al. (Färe et al. 1989) is depicted in Model (2).

min 

observed input and output in  period. Model (1) is assumed closed and bounded, 
satisfying the conditions of the strong disposability of the desirable output and input. 
The inequality constraints in Model (1) on input and output reflect that output and 
input are freely disposable. The graphic hyperbolic measure based on the definitions 
set by Färe et al. (Färe et al. 1989) is depicted in Model (2). 

t th−

( )

( )
( ) ( )

( )
1

( ) ( ) ( ) ( )

1

( )

1

( )

 

      ,          1,..., ,

      ,   1,..., ,

      1,                    1,..., ,

       0,              

t
k

tN
t t bk

j bj bt
j k

N
t t t t

j aj k ak a
j

N
t

j
j

t
j

YY b n

X X a n

j N

ρ

λ
ρ

λ ρ

λ

λ

=

=

=

≥ =

≤ =

= =

∀ ≥

∑

∑

∑

min
subject to.

       1,...,t T=

         (2)  

If a specific efficient  DMU in k th− t th−  period measures its efficiency by 
Model (2), it follows that inputs and outputs use the same scalar to adjust to the 
frontier. As such, they form a hyperbolic-adjusting path for evaluation. Chang (Chang 
1999) extended the Färe et al. (Färe et al. 1994) model by minimizing the arithmetic 
mean of proportional reduction in inputs and proportional expansion in outputs. 
Chang’s (Chang 1999) model was thus modified as follows: 

( ) ( )
( )

( )
( ) ( )

( )
1

( ) ( ) ( ) ( )

1

( )

1

( )     =
2

      ,           1,..., ,

      ,    1,..., ,

      1,                      1,..., ,

      

t t
t k k

k

tN
t t bk

j bj bt
j k

N
t t t t

j aj k ak a
j

N
t

j
j

YY b n

X X a n

j N

θ πρ

λ
θ

λ π

λ

=

=

=

+

≥ =

≤ =

= =

∑

∑

∑

min

subject to.

( ) 0,                        1,...,t
j t Pλ∀ ≥ =

         (3) 

where ( )t
kπ  represents the  DMU maximum expansion of outputs in t  

period, while 

k th− th−

( )t
kθ  represents the k th−  DMU inputs efficiency score in t  

period. Then, 

th−

( )t
kπ  and ( )t

kθ  are equal to one; thus, their overall efficiency scores can 

subject to.

                                                                                                                                                (2)
                                                                                                                                                 

observed input and output in  period. Model (1) is assumed closed and bounded, 
satisfying the conditions of the strong disposability of the desirable output and input. 
The inequality constraints in Model (1) on input and output reflect that output and 
input are freely disposable. The graphic hyperbolic measure based on the definitions 
set by Färe et al. (Färe et al. 1989) is depicted in Model (2). 

t th−

( )

( )
( ) ( )

( )
1

( ) ( ) ( ) ( )

1

( )

1

( )

 

      ,          1,..., ,

      ,   1,..., ,

      1,                    1,..., ,

       0,              

t
k

tN
t t bk

j bj bt
j k

N
t t t t

j aj k ak a
j

N
t

j
j

t
j

YY b n

X X a n

j N

ρ

λ
ρ

λ ρ

λ

λ

=

=

=

≥ =

≤ =

= =

∀ ≥

∑

∑

∑

min
subject to.

       1,...,t T=

         (2)  

If a specific efficient  DMU in k th− t th−  period measures its efficiency by 
Model (2), it follows that inputs and outputs use the same scalar to adjust to the 
frontier. As such, they form a hyperbolic-adjusting path for evaluation. Chang (Chang 
1999) extended the Färe et al. (Färe et al. 1994) model by minimizing the arithmetic 
mean of proportional reduction in inputs and proportional expansion in outputs. 
Chang’s (Chang 1999) model was thus modified as follows: 

( ) ( )
( )

( )
( ) ( )

( )
1

( ) ( ) ( ) ( )

1

( )

1

( )     =
2

      ,           1,..., ,

      ,    1,..., ,

      1,                      1,..., ,

      

t t
t k k

k

tN
t t bk

j bj bt
j k

N
t t t t

j aj k ak a
j

N
t

j
j

YY b n

X X a n

j N

θ πρ

λ
θ

λ π

λ

=

=

=

+

≥ =

≤ =

= =

∑

∑

∑

min

subject to.

( ) 0,                        1,...,t
j t Pλ∀ ≥ =

         (3) 

where ( )t
kπ  represents the  DMU maximum expansion of outputs in t  

period, while 

k th− th−

( )t
kθ  represents the k th−  DMU inputs efficiency score in t  

period. Then, 

th−

( )t
kπ  and ( )t

kθ  are equal to one; thus, their overall efficiency scores can 

If a specific efficient k-th DMU in  t-th period measures its efficiency by Model (2), it 
follows that inputs and outputs use the same scalar to adjust to the frontier. As such, they form 
a hyperbolic-adjusting path for evaluation. Chang (Chang 1999) extended the Färe et al. (Färe 
et al. 1994) model by minimizing the arithmetic mean of proportional reduction in inputs and 



Efficiency Predictions by Fuzzy Piecewise Auto-regression 207
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4. ILLUSTRATION AND DISCUSSION 
 
4.1 Input and Output Variables 
 

The data set obtained from the database of Taiwan Economics Journals (TEJ) 
from 2002 to 2007 consists of 22 observations ( 22N = ). All observations could be 
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. After validation, 
shift the time horizon from t to  t+1 period to forecast the efficiency of each DMU.
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4. ILLUSTRATION AND DISCUSSION

4.1 Input and Output Variables

The data set obtained from the database of Taiwan Economics Journals (TEJ) from 2002 to 
2007 consists of 22 observations ( N=22 ). All observations could be referred to as the biggest 
possibility in Taiwan ś commercial banks. Appendix A shows the number of DMUs and a map 
of commercial bank names. Section 2.2 shows that three inputs ( na=3 ) and three outputs  ( nb=3 
)  are chosen. The three output variables are the commission revenue amounts of loans ( y1, in 
103 New Taiwan dollars (NTD)), amount of loans ( y2 , in 103 NTD), and investment ( y3 , in 103 

). The three inputs are assets (x1, in  103 NTD ), employee expenditures ( x2, in 103 NTD), and 
amount of deposits ( x3, in 103 NTD). We assume that the 2003–2007 data have been processed 
to pass through gross national product deflators based on 2002 price levels to illustrate the 
approach. Descriptive statistics of the used variables are presented in Appendix B.

4.2 Efficiency Predictions

The efficiency scores could be calculated by the Section 3.2 evaluation of Model (3). Only 
DMUs 5, 6, 12, and 22 are efficient from 2002 to 2007. After applying Eq. (4), the CIE index 
could be calculated from 2002 to 2007. If the cell values are larger than 1, they represent an 
adjacent period of efficiency improvement; otherwise, they show a case of decay.

The validating CIE ranges are summarized in Table 3. The ranges for 
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Table 3: Validating CIE index, (PRY, NRY, NRL, PLY)

DMU(k)
1 1.061833 0.9541342 0.9541342 0.8464355 0.9942
2 1.057949 0.9467880 0.9467880 0.8356266 0.9771
3 1.064589 0.9531994 0.9531994 0.8418101 0.9701
4 1.072987 0.9609873 0.9609873 0.8489873 0.9050
5 1.069892 0.9661136 0.9661136 0.8623356 1.0000
6 1.069892 0.9661136 0.9661136 0.8623356 1.0000
7 1.082653 0.9759561 0.9759561 0.8692591 1.0267
8 1.077701 0.9739233 0.9739233 0.8701453 1.0124
9 1.066209 0.9575539 0.9575539 0.8488982 0.9871

10 1.084549 0.9693631 0.9693631 0.8541767 0.9593
11 1.091144 0.9626179 0.9626179 0.8340916 1.0017
12 1.069892 0.9661136 0.9661136 0.8623356 1.0000
13 1.069892 0.9661136 0.9661136 0.8623356 0.9738
14 1.085427 0.9678546 0.9678546 0.8502828 1.0147
15 1.050965 0.9389646 0.9389646 0.8269646 0.9950
16 1.084823 0.9728231 0.9728231 0.8608231 1.0288
17 1.110073 1.006295 1.006295 0.9025174 1.0028
18 1.088236 0.9720209 0.9720209 0.8558057 1.0153
19 1.052119 0.9360543 0.9360543 0.8199894 0.9396
20 1.042399 0.9338922 0.9338922 0.8253852 0.9656
21 1.098591 0.9900062 0.9900062 0.8814217 0.9979
22 1.069892 0.966136 0.966136 0.8623356 1.0000

In predicting the efficiency of 2006, Eq. (23) was used as the base and multiple of 
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k k

   (24) 
Forecasting the 2007 efficiency scores should be prepared after validation. The 

period from 2006 to 2007, based on Eq. (24), was moved such that its forecast 
functions as Eq. (25). 

(2007) 2004,2003 2005,2004 (2006)([1.815,0,0.104] 0.6278615* 0.2207748* )*k kp pδ δ= − −    (25) 
Table 4 shows the accuracy rate as approximately 87% (DMUs 18, 20, 21 were 

failed to predict). Figure 2 shows the forecasting results.  
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1 1.0468 0.9436 0.9436 0.8405 0.9754 
2 1.0020 0.9022 0.9022 0.8023 0.9530 
3 1.0061 0.9054 0.9054 0.8047 0.9808 
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5 1.0699 0.9661 0.9661 0.8623 1.0000 
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16 0.9753 0.8780 0.8780 0.7807 0.9438 
17 0.9944 0.8988 0.8988 0.8031 0.9789 
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Table 4 shows the accuracy rate as approximately 87% (DMUs 18, 20, 21 were failed to 
predict). Figure 2 shows the forecasting results.
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Table 4:  Forecasting 2007 Efficiency, PRY, NRY, NRY, NLY
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5. ANALYSIS

This paper discusses two hybrid methodological developments to show how the efficiency 
of DEA can be used in forecasting. This proposed method has two advantages. First, CIE shows 
the relative efficiency of two adjacent periods and avoids the direct use of input and output 
variables. Therefore, CIE provides not only a priori relative concepts on frontiers and best 
practices, but also shows possible efficiency. Second, historical data were used to regress the 
possibility and necessity estimation model in place of the random error-type regression model. 
The four ranges provide decision makers with specific DMU suggestions that the specific DMU 
stands for (i.e., if the specific DMU does not frontier in the current, such that it can make an 
effort to reach the frontier). 

However, the analyses in the present study have certain limitations. First, efficiency 
prediction can be divided two parts: efficiency shift and efficiency movement. The former is 
mainly caused by technique change but the latter is caused by changes in the input and output 
ratio. Our analysis solved the efficiency shift issues, but did not solve those for efficiency 
moment. This issue will be evaluated in our future work. Second, we do not explain external 
effects that influence the evaluation result, such as government power. Third, we excluded 
incomplete data, newcomers, and mergers and acquisitions of commercial banks from 2002 to 
2007. The DEA method can be applied to evaluation and planning techniques. Further research 
can be conducted regardless of the method, on other possible concepts. 
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Appendix A: The 22 Taiwan commercial banks, their respective numbers, 

and commercial bank names

DMU Bank DMU Bank DMU Bank DMU Bank

1  ChangHwa Bank 7 ChinaTrust Bank 13 Union Bank of 
Taiwan 19 TC Bank

2 First Bank 8 Cathay Bank 14 Bank of SinoPac 20 Entie Bank

3  Hua Nan Bank 9 Fubon Bank 15 E.SUN Bank 21  JIH SUN Bank

4 Mega Bank 10 Taiwan Business 
Bank 16 YuanTa Bank 22 Taiwan 

Cooperative  Bank

5 King ś Town Bank 11 Bank of Kaohsiung 17 TaiShin Bank

6 TaiChung Bank 12 COSMOS Bank 18  Far Eastern Bank



資訊管理學報　第十七卷　專刊220

Appendix B: Taiwan Commerical Banks Descriptive Data from 2002 to 2007

Period Variable Mean Stdev Max Min

2002

Commission revenue 
Amount of loans
Investment
Asset
Employee expenditures
Amount of deposit

10753525.05
3616.45

467917.41
2053.45

355658.82
61017177.91

9243351.32
2927.48

402384.71
2272.26

294983.18
66461982.33

26902952.00
9793.00

1548830.00
10035.00

1127292.00
252734211.00

1375074.00
932.00

117027.00
186.00

88803.00
6477928.00

2003

Commission revenue
  Amount of loans
 Investment
Asset 
   Employee expenditures
 Amount of deposit

11495825.50
3977.91

512122.05
2595.77

389112.05
111311167.36

9798462.43
2974.29

427232.73
2671.52

310228.62
117341836.63

33424599.00
10514.00

1640739.00
12432.00

1168354.00
333353270.00

2393015.00
987.00

12187.00
301.00

93959.00
2520892.00

2004

Commission revenue 
Amount of loans
Investment
Asset
Employee expenditures
Amount of deposit

11715734.95
4500.50

552297.82
3659.18

424049.91
140642055.32

9608655.15
3330.18

437430.53
3780.32

322145.36
143383968.37

33978243.00
11965.00

1681279.00
17806.00

1220995.00
398996916.00

2345382.00
1043.00

125098.00
335.00

102397.00
2478795.00

2005

Commission revenue
 Amount of loans 
 Investment 
Asset 
   Employee expenditures
 Amount of deposit

12438270.64
4754.82

603705.36
3850.73

468763.91
136170532.18

9694251.83
3447.33

440713.06
4131.05

332844.09
130640406.93

33429366.00
12459.00

1608747.00
18620.00

1258451.00
390606990.00

2373280.00
1061.00

127303.00
282.00

100867.00
4736937.00

2006

Commission revenue 
Amount of loans
Investment
Asset
Employee expenditures
Amount of deposit

13157930.59
4841.23

667680.73
3844.36

538125.45
143565546.77

10091337.20
3397.60

487253.49
4181.17

414045.91
132704623.16

33591776.00
12160.00

1917281.00
18782.00

1703126.00
384000000.00

2344018.00
842.00

123279.00
325.00

98120.00
4771517.00

2007

Commission revenue
 Amount of loans 
  Investment 
 Asset 
  Employee expenditures
  Amount of deposit 

13142148.36
5213.32

690772.41
4733.82

563528.50
133674192.27

10374880.60
3447.35

515772.77
5236.30

437382.17
126465809.61

33866474.00
12143.00

1998654.00
24661.00

1719370.00
371145484.00

2265556.00
1043.00

130526.00
362.00

110744.00
2773119.00


