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Abstract
The Station-to-Station (STS) protocol is a well known two-party key agreement scheme 

that provides mutual entity authentication, key confirmation and forward secrecy. Al-Riyami 

and Paterson (2003) extended the STS protocol to the tripartite case, which is called TAKC-STS 

and is believed to be secure and pass-optimal for tripartite key confirmation protocols. However, 

in this paper, we will show that the TAKC-STS protocol cannot resist the man-in-the-middle 

attack and the insider attack. We then propose a secure tripartite STS protocol to conquer the 

weaknesses, and prove the security in the random oracle model. 
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摘要

著名的STS 通訊協訂可提供雙方認證、金鑰確認、及向前安全等功能。在 2003年Al-
Riyami 及Paterson 學者將 STS 協訂擴充成三方式認證金鑰，並稱之為 TAKC-STS 協訂；
迄今，學界認為TAKC-STS 協訂可提供足夠安全並可達成最好的回合數。此篇論文將指
出此機制無法抵擋中間人攻擊及內部攻擊；我們也將提出一安全的三方式認證金鑰並證

明其安全。

關鍵字：��安全、金鑰協商協議、內部攻擊、STS、向前安全、中間人攻擊
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1. Introduction 

The Station-to-Station (STS) protocol is a well known two-party key agreement scheme 

based on classic Diffie-Hellman that provides mutual key and entity authentication. STS was 

originally presented in 1987 in the context of ISDN security [18], finalized in 1989 and generally 

presented in 1992 [13]. Important features of the STS protocol include no timestamps, key 

confirmation and perfect forward secrecy. Its explicit key confirmation makes it an authenticated 

key agreement with key confirmation (AKC) protocol. STS has inspired the following design of 

many two-party key agreement schemes like [10, 11, 12, 17, 23]. 

Due to the practical importance, the study of tripartite (three-party) key agreement schemes 

has attracted the attention of many researchers recently like [1, 2, 8, 9, 14, 15, 16, 20, 21]. A 

tripartite key agreement protocol allows three parties establish session keys. The three-party (or 

tripartite) case is of most practical importance not only because it is the most common size for 

electronic conferences but also because it can be used to provide a range of services for two 

parties communicating. For example, a third party can be added to chair, or referee a conversation 

for ad hoc auditing, data recovery or escrow purposes [1, 2, 15]. It can also facilitate the job of 

group communication.  

However, many existing tripartite key protocols like [1, 2, 14, 15, 16, 20] suffer distinct 

degree of security weaknesses. Joux’s scheme cannot resist the basic man-in-the-middle attack, 

Shim‘s scheme [20] was found to be vulnerable to the key compromise impersonation attack, and 

the Lin-Lin scheme [16] did not consider the insider attack. In the insider attack [8, 9], an insider 

A might be able to fool B into believing that they have participated in a protocol run with C, while 

in fact C has not been active. This kind of insider attack could result in serious fraud and loss, if 

the impersonated C acts as an on-line escrow agent or a referee. To resist the insider attack, 

Al-Riyma and Paterson [1, 2] extended the two-party STS protocol to the tripartite case, which is 

called the Tripartite Authenticated Key Confirmation STS (TAKC-STS) protocol and TAKC-STS 

has been claimed and believed to be secure against insider attack, man-in-the-middle attack and 

providing key confirmation (even though they did not formally proved this protocol in the original 

paper, and the previous models like [3, 4, 6, 19] did not cover insider attack). However, we find 

that the TAKC-STS protocol cannot resist the basic man-in-the-middle attack and the insider 

attack, and fails to commit key confirmation.  
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In this paper, we will show the weaknesses, and then propose a secure tripartite STS 

protocol that conquers the security weaknesses. The security of the proposed tripartite STS 

protocol is examined in the random oracle model. However, we should note that, as Canetti et al. 

[7] had noted, a protocol proved secure in the random model does not imply there exist any 

secure implementations of the protocol in the real world, instead it serves as an engineering 

approach to rule out in-secure designs. Another tool used to verify the conformance and 

security of a protocol is Burrows et al,’s BAN logic [5]; however, in our opinions, BAN logic is 

strong in conformance testing but weak in security proof because there exist quite a few security 

protocol proved in BAN logic has been reported in-secure like [12]. Therefore, we still apply 

random oracle model to prove the security. 

2. Security weaknesses of TAKC-STS  
Diffie, van Oorschot and Wiener [13] proposed a three-pass, two party key agreement 

protocol, the STS protocol, to defeat man-in-the-middle attacks. Al-Riyma and Paterson [1, 2] 

extended the STS protocol to three-parties and six-pass key confirmation protocol in the 

non-broadcast environment. This protocol is called the TAKC-STS protocol in this paper. 

TAKC-STS has been believed to be secure. However, this section will show the weaknesses.  

2.1 Review of TAKC-STS protocol 

In the protocol below, an appropriate prime p  and a generator g  for the multiplicative 
group *

pZ  are selected. Notation ag  denotes pg a mod , and we omit modulo p operations in 

the rest of this paper for simplicity. *,, pZcba ∈  are randomly ephemeral values selected by A,

B and C respectively. AI  denotes the identity of A , ACert  denotes the public key certificate of 
A, ()AS  denotes A’s signature, and ()

ABCKE  denotes symmetric encryption under the session 

key ABCK .  The TAKC-STS protocol is depicted as follows. 

TAKC-STS 

A → B : ag || ACert ;                                                              (1) 

B → C : ag || ACert || bg || BCert || abg                                              (2) 
C → A : bg || BCert || cg ||

CCert || bcg ||
ABCKE ( )||||( XIIS BAC ) ,                 (3) 

        where cba gggX ||||=
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A → B : cg || CCert || acg ||
ABCKE ( )||||( XIIS BAC )||

ABCKE ( )||||( XIIS CBA )     (4) 

B → C :
ABCKE ( )||||( XIIS CBA )||

ABCKE ( )||||( XIIS CAB )                       (5) 

B → A :
ABCKE ( )||||( XIIS CAB )                                                  (6) 

Entity A initiates the protocol by sending the message in (1). After that, B forwards the 

message, his ephemeral public key bg  and abg  to C, where abg  is computed using ag  and 
b. After receiving the messages in (2), C is able to compute the session key ABCK =

pg cab mod)(  and uses this key to encrypt his signature )||||( XIIS BAC . Upon receiving 
the messages in (3), A can compute ABCK = pg abc mod)(  and sends the messages in (4). 

Likewise, B can compute ABCK = pg bac mod)(  and sends the messages in (5). The 

signatures in (3-6) are encrypted using the key ABCK . So, if each receiver can use his key to 

decrypt the encrypted signature then he is assured of the session key. This provides key 

confirmation function.   

2.2 Man-in-the-middle attack on TAKC-STS 

Now we show the man-in-the-middle-attack on the TAKC-STS protocol. Here E denotes the 

adversary sitting between entities A, B, and C. The notation CA E→/  means that the messages 

sent by A to C are intercepted by E, and the notation A(E) C means that E impersonates A to 
send messages to C.

CABK  denotes the session key computed by C and to be used among A, B

and C.
AECABK →

 denotes the session key was originally computed by C, but is modified by the 

adversary E for A. *,, pZvut ∈  are randomly ephemeral values selected by E.

The key idea behind the attack is that, given xg , yg  and zg , one cannot compute the 

value xyg  and cannot verify whether zg = xyg . Therefore, the adversary can modify the 

ephemeral D-H values abg , bcg  and acg  without the receivers’ notice. Applying this 

technique, the adversary can control the session key computed by each receiver respectively, and 

uses the fake session keys to re-encrypt each signer’s signature. The attack scenario is as follows. 

A → B : ag || ACert ;                                                            (1) 

B E→/ C : ag || ACert || bg || BCert || abg                                           (2) 

B (E)→ C : ag || ACert || bg || BCert || tg                                          (2’) 
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C E→/ A : bg || BCert || cg || CCert || bcg ||
CABKE ( )||||( XIIS BAC ),               (3) 

 where cba gggX ||||=  and 
CABK = tcg                                                     

C (E)→ A : bg || BCert || cg || CCert || ug ||
AECABKE

→
( )||||( XIIS BAC ),           (3’) 

      where 
AECABK →

= uag                                                

A E→/ B : cg || CCert || acg ||
AECABKE

→
( )||||( XIIS BAC )||

BCAKE ( )||||( XIIS CBA ),   (4) 

where
AECABK →

=
BCAK = uag                                  

A(E)→ B: cg || CCert || vg ||
BECABKE

→
( )||||( XIIS BAC )||

BBCEAKE
→

( )||||( XIIS CBA ), (4’) 

where
BECABK →

=
BBCEAK →

= vbg                              

B E→/ C :
BBCEAKE

→
 ( )||||( XIIS CBA )||

CBAKE  ( )||||( XIIS CAB ),             (5) 

     where 
BBCEAK →

=
CBAK = vbg

B (E)→ C :
CBCEAKE

→
 ( )||||( XIIS CBA )||

CCEBAKE
→

 ( )||||( XIIS CAB ),         (5’) 

      where 
CBCEAK →

 = 
CCEBAK →

=
CABK = tcg                                 

B E→/ A :
CBAKE  ( )||||( XIIS CAB )                                             (6) 

B (E)→ A :
ACEBAKE

→
 ( )||||( XIIS CAB ) ,                                       (6’) 

        where 
ACEBAK →

= AECABK →
=

BCAK = uag                                  

The adversary E starts to intercept the messages from Pass (2), where the messages sent by B

to C are intercepted by E. E forwards the intercepted data except that abg  is replaced with tg
in (2’). Upon receiving the modified data, C wrongly believes that the Diffie-Hellman (D-H) key 
between A and B is tg  and computes his session key 

CABK = tcg . C then sends the data in (3) 

that include the encryption of C’s signature using the key 
CABK , but the messages are 

intercepted by E. Since E can compute the key 
CABK , he can decrypt the data in (3) to derive C’s 

signature )||||( XIIS BAC . E replaces the D-H key between B and C with ug  and encrypts 
C’s signature )||||( XIIS BAC  using the key 

AECABKE
→

= uag  in Pass (3’) so that A will 
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wrongly accept the key confirmation data 
AECABKE

→
( )||||( XIIS BAC ), because A will 

compute his session key 
BCAK = uag =

AECABK →
 and can use this key to derive C’s signature 

from 
AECABKE

→
( )||||( XIIS BAC ). So A will send the messages in Pass (4), where the 

messages are intercepted by E. E replaces the D-H key acg  between A and C with the key vg ,

and encrypts A’s and C’s signatures using the key vbg  in (4’) so that B will wrongly compute the 

key as vbg  and will use this key to derive A’s and C’s signatures. B also uses this wrong key to 

encrypt his signature in (5), where the messages are intercepted by E, too. E re-encrypts the 
signatures in (5’) such that C can use his computed key 

CABK = tcg  to derive the signatures. 

This makes C wrongly believe that A and B uses the same key 
CABK , but actually they do not. B

sends his key confirmation to A in (6), but the message is modified by E in (6’) such that A can use 
his wrong key uag  to decrypt the encrypted signature.   

The key factor of this attack is that a receiver cannot verify the received D.-H. key even if he 
has the two ephemeral values ag  and bg . So, the attacker can replace the D.-H. key with a 

random value chosen by him without the receiver’s notice. Therefore, he can control the session 

keys computed by A, B and C respectively. The attacker also use these fake keys to re-encrypt A’s, 

B’s and C’s signatures such that the designated receivers can use the wrong key to decrypt the 

encrypted signatures. These factors make the attack successful. Finally, the adversary E shares the 
key 

ACEBAK →
=

AECABK →
=

BCAK = uag  with A, the key 
BECABK →

=
BBCEAK →

=
CBAK = vbg

with B, and the key CBCEAK →
 = CCEBAK →

 =
CABK = tcg  with C respectively. Unfortunately, 

A, B and C wrongly believe that they share the same key with their designated receivers. The 

main-in-the-middle attack succeeds. 

2.3 Insider attack 

In addition to the above attack, we will show that an insider (say B) can easily fool one party 

(say C) into accepting a wrong key such that C will be excluded from the communications. This 

might result in serious risk, for example if C acts as an on-line escrow agent, an auditor or a 

referee. If B could impersonate C to A, then B can communicate with or performing transactions 

with A; whereas A would do the transactions or communications only if C (the referee) is 

monitoring the contents on-line. With no referee involved, this might cause serious risk for A. We 
demonstrate one example attack as follows. In the following, the notation 

ABCABK
→)(

 denotes 

that the key was originally computed by C for A but is modified by B.
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A → B : ag || ACert ;                                                            (1) 

B → C : ag || ACert || bg || BCert || tg                                              (2) 

C B→/ A : bg || BCert || cg || CCert || bcg ||
CABKE ( )||||( XIIS BAC ),               (3) 

 where cba gggX ||||=  and 
CABK = tcg                                                     

C (B)→ A : bg || BCert || cg || CCert || bcg ||
( ) ABCABKE

→
( )||||( XIIS BAC ),           (3’) 

      where 
ABCABK

→)(
= abcg                                                

A → B : cg || CCert || acg ||
ABCABKE

→)(
( )||||( XIIS BAC )||

BCAKE ( )||||( XIIS CBA ),   (4) 

where
ABCABK

→)(
=

BCAK = abcg                                  

B → C :
CBBCAKE

→)(
 ( )||||( XIIS CBA )||

CCBAKE
→

( )||||( XIIS CAB ),               (5) 

     where 
CCBAK →

=
CBBCAK

→)(
=

CABK = tcg

B → A :
CBAKE  ( )||||( XIIS CAB )                                                (6) 

 where 
CBAK = abcg    

The goal of the inside attacker, B, is to let C accept a wrong key CABK = tcg , whereas B and A
share the same key 

BCAK =
CBAK = abcg  so that C will be excluded from the communications. In 

Pass (2), B honestly sends the two ephemeral values ag  and bg , but, instead of a correct D-H 
key abg , sends a wrong value tg  such that C will wrongly compute 

CABK = tcg . In order to 

successfully cheat C and A, B should intercept the messages in Pass (3), and replaces 

CABKE ( )||||( XIIS BAC ) with 
AECABKE

→
( )||||( XIIS BAC ) in pass (3’) such that A can 

decrypt the message without noticing the cheating. A can generate the correct messages in Pass 

(4), and B uses the wrong key tcg  to encrypt the signature such that C will not notice the 
cheating in Pass (5). Finally, A and B share the same key 

BCAK =
CBAK = abcg , but C owns a 

wrong key tcg .
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3. Secure Tripartite STS (Tri-STS) protocol 
To conquer the security weaknesses of TAKC-STS, we, based on the CDHP problem and 

cryptographic one-way hash function, shall propose a new tripartite STS protocol. The security of 

the proposed scheme can be proved in modified Bellare-Rogaway model [8, 10].  

Figure 1. Tripartite STS protocol 

Definition 1. Computational Diffie-Hellman problem (CDHP): Given pg a mod

and pg b mod , where a  and b  are random numbers form 1−qZ , compute 

pg ab mod .
Now we are ready to introduce our Tri-STS protocol. In the protocol below, an appropriate 

prime p  and a generator g  for the multiplicative group *
pZ  are selected. sid  denotes the 

session identifier that can uniquely identify one session from others, ()AS  denotes the signature 

of entity A  and the underlying signature scheme (for example, [22]) is secure against adaptively 
chosen message attack. ()h  denotes a cryptographic one-way function, and can be used as a key 

derivation function. Notation ag  denotes pg a mod , and we omit modulo p operations in the 
rest of this paper for simplicity. *,, pZcba ∈  are randomly ephemeral values selected by A, B

and C respectively. ABCK  denotes the final session key, AI  denotes the identity of A , and 

ACert  denotes the public key certificate of A. We describe the protocol in a non-broadcast 

environment, and we can easily modify it with less message runs if broadcast environment is 

available. The protocol is depicted in Figure 1, and is described in the following. 

A B C

1. sid || ag || ACert 2. sid || ag || ACert || bg || BCert || )( abghg

3. sid || ag || bg || ||)( abghg
cg (...)|||| CC SCert4. sid || bg || BCert || ||)( abghg cg

(...)|||| CC SCert || (...)BS

5. sid || (...)AS  6. sid || (...)AS || (...)BS
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(1) A → B :    sid || ag || ACert                                               

(2) B → C :   sid || ag || ACert || bg || BCert || )( abghg                           

(3) C → B : sid || ag || bg || )( abghg || cg || CCert || )(XSC

, where C computes )(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅  and 

generates its signature on ||||||||||||( ba
CBA ggIIIsidhX = cgh gg

ab
||)( ).

(4) B → A : sid || bg || BCert || )( abghg || cg || CCert || )(XSC || )(XSB ,

, where B  computes )(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅  and 

generates its signature on ||||||||||||( ba
CBA ggIIIsidhX = cgh gg

ab
||)( ).                           

(5) A → B : sid || )(XS A

, where A  computes )(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅  and 

generates its signature on ||||||||||||( ba
CBA ggIIIsidhX = cgh gg

ab
||)( ).

(6) B → C : sid || )(XS A || )(XSB                         

Step 1 is the same as that of the TAKC-STS protocol, but we requires entity B  to convey the 
value )( abghg  to entity C  in step 2 such that C  can compute the session key 

)( )( abghc
ABC ghK ⋅=  using its random integer c. C  also generates its signature on the ephemeral 

public values )||||||||||||||( )( cghba
CBA ggggIIIsidhX

ab
= .  The final session key is 

)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅ . Since both A  and B  can 

compute abg , )( abgh  and )( abghg , they can also compute the value )( abghcg ⋅  and the session 

key ABCK . In steps 4~6, A  and B  respectively generate the signatures on the ephemeral 

public values. Only when the signatures from the communicating parties are successfully verified, 

A , B and C  will accept the session key.  

It is easy to extend to key confirmation function by appending the hash value of the session 

key in the message to be signed. Since each session key depends on the ephemeral values X and 

the signatures is generated on the related data- identities and the ephemeral values, the proposed 

scheme achieve the forward secrecy, key confirmation, and explicit authentication. In the next 

section, we will prove the security in the random oracle model. 
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4. Security Notations and Proof 
The security of the proposed schemes concerns the privacy of the authenticated session key. 

To capture the security of the tripartite key agreement scheme, we should consider the 

in-distinguishability property [3, 4, 6, 10], and the resistance to key-compromise impersonation 

and the insider attack. In all the models of BR95 [3] and BPR2000 [4], a session with corrupted 

entities is not considered as fresh; therefore, it cannot model the key-compromise impersonation 

and the insider attack. We, therefore, prove the in-distinguishability in a modified model [8, 10], 

and gain the advantage of insider attack and key-compromise impersonation attack related to the 

advantage of forging advantage of underlying signature scheme.  Regarding the 

in-distinguishability, we adopt the BPR2000 model with some modifications- (1) extension to the 

tripartite case, and (2) extension for the Corrupt query.  

4.1 Security notations 

The in-distinguishability 

In the model, the adversary Adver  is a probabilistic machine that controls all the 
communications that take place between parties by interacting with a set of i

UUU 321 ,,Π   oracles 

( i
UUU 321 ,,Π  is defined to be the ith instantiation of an entity  1U  in a specific run, and 2U  and 

3U  are the entities with whom 1U  wishes to establish a session key). The pre-defined oracle 

queries are described informally as follows. 

- Send( 1U , 2U , 3U , i, m) allows Adver  to send some message m of his choice to 
i

UUU 321 ,,Π  at will. i
UUU 321 ,,Π , upon receiving the query, will compute what the protocol 

specification demands and return to Adver  the response message and/or decision. If 
i

UUU 321 ,,Π  has either accepted with some session key or terminated, this will be made 

known to Adver .

 Reveal( 1U , 2U , 3U , i) query allows Adver  to expose an old session key that has 
been previously accepted. i

UUU 321 ,,Π , upon receiving the query and if it has accepted 

and holds some session key, will send this session key back to Adver .

Corrupt( 1U , EK ) query allows Adver  to corrupt the entity 1U  at will, and thereby 

learns the complete internal state of the entity. The corrupt query also allows Adver  to 

overwrite the long-term key of the corrupted entity to the value of his choice (i.e., EK ). 

(1) A → B :    sid || ag || ACert                                               

(2) B → C :   sid || ag || ACert || bg || BCert || )( abghg                           

(3) C → B : sid || ag || bg || )( abghg || cg || CCert || )(XSC

, where C computes )(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅  and 

generates its signature on ||||||||||||( ba
CBA ggIIIsidhX = cgh gg

ab
||)( ).

(4) B → A : sid || bg || BCert || )( abghg || cg || CCert || )(XSC || )(XSB ,

, where B  computes )(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅  and 

generates its signature on ||||||||||||( ba
CBA ggIIIsidhX = cgh gg

ab
||)( ).                           

(5) A → B : sid || )(XS A

, where A  computes )(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅  and 

generates its signature on ||||||||||||( ba
CBA ggIIIsidhX = cgh gg

ab
||)( ).

(6) B → C : sid || )(XS A || )(XSB                         

Step 1 is the same as that of the TAKC-STS protocol, but we requires entity B  to convey the 
value )( abghg  to entity C  in step 2 such that C  can compute the session key 

)( )( abghc
ABC ghK ⋅=  using its random integer c. C  also generates its signature on the ephemeral 

public values )||||||||||||||( )( cghba
CBA ggggIIIsidhX

ab
= .  The final session key is 

)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK = )|| )( abghcg ⋅ . Since both A  and B  can 

compute abg , )( abgh  and )( abghg , they can also compute the value )( abghcg ⋅  and the session 

key ABCK . In steps 4~6, A  and B  respectively generate the signatures on the ephemeral 

public values. Only when the signatures from the communicating parties are successfully verified, 

A , B and C  will accept the session key.  

It is easy to extend to key confirmation function by appending the hash value of the session 

key in the message to be signed. Since each session key depends on the ephemeral values X and 

the signatures is generated on the related data- identities and the ephemeral values, the proposed 

scheme achieve the forward secrecy, key confirmation, and explicit authentication. In the next 

section, we will prove the security in the random oracle model. 
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1  Convergent validity is evaluated by measuring the correlation of each item representing the construct with the aggregate 
measure for that construct less the focal item. This approach assumes that the total score is valid; thus, the extent to 
which the item correlates with the total score is indicative of construct validity for the item (Kerlinger, 1986)

2   Discriminate validity is the degree to which a construct differs from other constructs and is usually verified through factor 
analysis (Kerlinger, 1986).

This query can be used to model the real world scenarios of an insider co-operating with 

the adversary or an insider who has been completely compromised by the adversary.
Test( 1U , 2U ,

3U , i) query: If i
UUU 321 ,,Π  has accepted with some session key and is 

being asked a Test( 1U , 2U , 3U , i ), then depending on a random bit b, Adver  is 

given either the actual session key or a session key drawn randomly from the session key 

distribution.  

The definition of security depends on the notations of partnership of oracles and 

in-distinguishability [3, 4]. In the BPR2000 model, partnership of oracles is defined using SIDs

(session identifiers). The definition of partnership is used in the definition of security to restrict 

the adversary’s Reveal and Corrupt queries to oracles that are not partners of the oracles whose 

key the adversary is trying to guess [3, 4]. 
Partnership [3]: The oracles i

UUU 321 ,,Π , j
UUU 312 ,,Π  and n

UUU 123 ,,Π  are partners if, and only if, 

the three oracles have accepted the same session key with the same SID, have agreed on the same 
set of entities, and no other oracles besides i

UUU 321 ,,Π , j
UUU 312 ,,Π  and n

UUU 123 ,,Π  have accepted 

with the same SID.

Definition of security in both BR95 and BPR2000 also depend on the notation of freshness of 
the oracle to whom the Test query is sent [3, 4, 19]. For i

UUU 321 ,,Π  to be fresh, the adversary in 

the BR95 model is not restricted from sending Corrupt queries to entities apart from the entities of 
oracles i

UUU 321 ,,Π  and its partner oracles j
UUU 312 ,,Π  and n

UUU 123 ,,Π  (if such partners exist). We, 

therefore, adopt the definition of freshness of BR95 model.  

Definition 3. Freshness [3]: i
UUU 321 ,,Π  is fresh (or it holds a fresh session key) at the end of 

execution, if, and only if, oracle i
UUU 321 ,,Π  has accepted with or without a partner oracles 

j
UUU 312 ,,Π  and n

UUU 123 ,,Π , all the oracles i
UUU 321 ,,Π , j

UUU 312 ,,Π  and n
UUU 123 ,,Π  (if such an 

partner oracles exist) have not been sent a Reveal query, and the entities 1U , 2U  and 3U  of 
oracles i

UUU 321 ,,Π , j
UUU 312 ,,Π  and n

UUU 123 ,,Π  (if such partners exist) have not been sent a 

Corrupt query.  

Security is defined using the game G, played between the adversary Adver  and a collections 

of i
UUU zyx ,,Π  oracles for players xU , yU  and zU },...,,{ 21 PNUUU∈  and instances 

},...,1{ SNi∈ . The adversary Adver  runs the game simulation G with setting as follows.  



Secure Tripartite STS key Agreement Protocol in Random Oracle Model 227

Stage 1: Adver  is able to send Send, Reveal and Corrupt queries in the simulation. 

Stage 2: At some point during G, Adver  will choose a fresh session and send a Test query 

to the fresh oracle associated with the test session. Depending on the randomly chosen bit b,

Adver  is given either the actual session key or a session key drawn from the session key 

distribution.  

Stage 3: Adver  continues making any Send, Reveal and Corrupt oracle queries to its 

choice.  

Stage 4: Eventually, Adver  terminates the game simulation and output its guess bit b’.

Success of Adver  in G is measured in terms of Adver ’s advantage in distinguishing 

whether Adver  receives the real key or a random value. Let the advantage function of Adver
be denoted by )(kAdv Adver , where k is the security parameter and )(kAdv Adver =2Pr[b=b’]-1.

Key-compromise impersonation 

The participating entities (except the adversary) are always considered honest in all of the 

BR95 model, the BPR2000 model and the Canetti-Krawczyk model [6], and a session with any 

corrupted entity is not considered as fresh for testing. It, therefore, cannot capture the 

key-compromise impersonation attack. However, we can gain the advantage of key-compromise 

impersonation to that of forging a signature with one private key belonging to one of the three 

communicating parties. In our tripartite scheme, the adversary who has compromised 1U ’s 

private key should try to impersonate 2U  to both 1U  and 3U .Therefore, the adversary should 

generate 2U ’s signature on the fresh sid and ephemeral public keys. Therefore, his advantage of 

impersonation is directly related to the advantage of forging 2U ’s signature.   

Insider attack 
For the tripartite case involving entities 1U , 2U  and 3U , we consider the following two 

scenarios are non-sense: (1) 1U  and 2U  co-operatively impersonate 3U  to themselves, and 

(2) 1U  impersonates 2U  and 3U  simultaneously to himself. So, the only meaningful attack 

scenarios are like that 1U  impersonates 2U  to 3U  such that 3U  wrongly believes that itself, 

1U  and 2U  will share the same key.  In our protocol, 3U  will complete the protocol and 

compute the session key if only if 3U  has validated the signatures from 1U  and 2U . Of course, 

1U  (the inside attacker) can generate his own signature. But, to generate valid signatures on the 
session-bound data sidh( || )(||||||||||||

321

abghcba
UUU ggggIII ) on behalf of 2U , 1U

should access 2U ’s private key. So, the inside attacker’s ( 1U ’s) advantage in impersonating 

2U  is the same as that advantage of forging 2U ’s signature. Since the underlying signature 
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scheme is secure against adaptively chosen message attack and 2U ’s ephemeral public key 

pg b mod  is random and fresh, the advantage is negligible. Now we are ready to define the 

security.  

Definition 4 (Secure tripartite key agreement protocol): A tripartite key agreement protocol is 

secure in our model if the following thee requirements are satisfied:  

1. Validity: When the protocol is run among three oracles in the absence of a malicious 

adversary, the three oracles accept the same key. 

2. Indistinguishability: For all probabilistic, polynomial-time adversaries Adver ,

)(kAdv Adver  is negligible.  

3. Security against insider impersonation and key-compromise impersonation: Even 

an insider (and a key-compromise impersonator) cannot impersonate another entity to the 

third entity and complete the session run with the third one. 

4.2 Security proof 

Theorem 1. The proposed tripartite STS key confirmation protocol is secure in the sense of 

Definition 4 if the underlying digital signature scheme is secure against the adaptively chosen 

message attack and the CDHP is hard.  

Proof: the proof is given in the appendix.  

5. Conclusions 
This paper has shown the man-in-the-middle attack and the insider attack on the TAKC-STS 

protocol. To conquer the security weaknesses, we have proposed a new tripartite STS protocol, 

which preserves the practical merits of the STS protocol. The security of the proposed protocol is 

proved in the random oracle model.  
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Appendix
Theorem 1. The proposed tripartite STS key confirmation protocol is secure in the sense of 

Definition 4 if the underlying digital signature scheme is secure against the adaptively chosen 

message attack and the CDHP is hard.  

Proof:

1. The validity is straightforward due to our protocol specification. 

2. The security against insider impersonation (and the key-compromise impersonation) is 

equivalent to the security of the underlying signature scheme. This has been discussed in 

Section 4.1.  

3. So, we concentrate on the in-distinguishability. The general notation of this in-distinguishable 

proof is to assume an adversary Adver  who can gain a non-negligible advantage in 

distinguishing the test key in the game, and uses Adver  to construct a breaker B that solves 
the CDHP with non-negligible probability. The hash function ()h  is modeled as a random 

oracle here.  

The proof can be divided into two cases since the adversary Adver  can either gain its 

advantage against the protocol by forging a participating entity’s signature or gain its advantage 

against the protocol without forging a participating entity’s signature.  

Case 1. Adver  gains its advantage by forging a participating entity’s signature.  

We denote by )](Pr[ kSuccSig  the probability of a successful signature forgery under 

adaptively chosen message attack, and define an event SigForgery to be an event that at some 
point in the game Adver  asks a Send( 1U , 2U , 3U , i, (...))||

1USsid  query to some partner 

oracles j
UUU 312 ,,Π  or n

UUU 123 ,,Π  such that the oracles accept, but the signature value ( (...)
1US )

used in the query was not previously output by a fresh oracle. We construct an adaptive Signature

forger F against the message authentication scheme using Adver  in the following game FG .

Stage 1: F is provided permanent access to the Signature oracle UO  associated with its private 

key of U  throughout the game FG .
F randomly chooses an entity },...,{ 1 PNUUU ∈ . U  is F’s guess at which Adver

will choose for the SigForgery.
F generates a list of public key/private key pairs for the entities }{\},...,{ 1 UUU

PN
.

Stage 2: F runs Adver  and answers all queries from Adver . This can be easily done since F
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can respond to all oracle queries as required using the keys chosen in Stage 1 and UO . F also 

records all the signatures it receives from UO . If, during the execution, Adver  make an oracle 

query that includes a forged signature for U , then F outputs the signature forgery as its own and 
halts. Otherwise, F halts as Adver  halts.  

Since U  is randomly chosen from the PN  entities, the probability that U  is the entity for 

whom Adver  generates a forgery is at least 1/ PN . Therefore, the success probability of F is 

P
F NkSigForgerykSucc /)](Pr[)](Pr[ ≥ . Hence,  

)](Pr[)](Pr[ kSigForgerykSuccN F
P ≥⋅ .                        (A.1) 

Since the underlying signature scheme is assumed to be secure against adaptively chosen 

message attack and the PN  is polynomial in k, the )](Pr[ kSigForgery  is negligible.  

Case 2. Adver  gains its advantage without forging a participating entity’s signature. 

This part assumes that Adver  gains its advantage without forging a participating entity’s 

signature.  

Denote Adver ’s advantage in differentiating the real session key from a random generated 
key without forging a signature as )(kAdv Adver

forgeryno = |Pr[ Adver  succeeds in correctly 

guessing]-1/2|.  
Now suppose, by the way of contradiction, the )(kAdv Adver

forgeryno  is non-negligible. Suppose that 

there exists an oracle i
CBA ,,Π  has accepted the session key of the form 

)(||||||||||||||(
abghcba

CBA ggggIIIsidh )|| )( abghcg ⋅  and has the partnership with fresh oracles 
j

CAB ,,Π  and n
BAC ,,Π . We say that Adver succeeds if at the end of Adver ’s experiment, Adver

picks i
CBA ,,Π  to ask a Test query and outputs the correct bit guess. Thus, Pr[ i

CBA ,,Π

succeeds]=1/2+ )(kη , where )(kη  is non-negligible. Now define hQ  be the event that ()h
has been queried on )(||...

abghcg ⋅  by Adver  or some oracle other than i
CBA ,,Π , j

CAB ,,Π  and 
n

BAC ,,Π . Then

Pr[ Adver  succeeds]= Pr[ Adver succeeds| hQ ]* Pr[ hQ ]+ Pr[ Adver  succeeds| hQ ]*

Pr[ hQ ]. Since ()h is a random oracle and  i
CBA ,,Π , j

CAB ,,Π  and n
BAC ,,Π  are fresh oracles, 

Pr[ Adver  succeeds | hQ ]=1/2. Thus 1/2+ )(kη ≤ Pr[ Adver  succeeds | hQ ]* Pr[ hQ ]+1/2, so 

that Pr[ hQ ]≥ )(kη . That is, given Adver  picks some fresh oracle i
CBA ,,Π  that has accepted 

the session, then the probability that ()h  has been queried on )(||...
abghcg ⋅  by Adver  or some 

oracle other than i
CBA ,,Π , j

CAB ,,Π  and n
BAC ,,Π  is non-negligible. We can, therefore, use Adver

to construct a breaker D  which solves the CDHP with non-negligible probability.  

D ’s task: Given pg, , pg a mod  and pg b mod , where ba,  are random numbers from 
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1−pZ , compute pg ab mod .

D ’s operation: D  randomly picks BA,  and C },...,U,U{U∈
PN21 , instance 

},...,1{∈,, SNnji  and },...,1{ hNu∈ , where PN , SN , and Nh respectively denote the number 

of entities, the number of session per entity, and the number of distinct queries to ()h , and all the 

three functions are polynomial function on the security parameter k. D  guesses that Adver
will select i

CBA ,,Π  to ask its Test query after i
CBA ,,Π  has accepted the session, and also guesses 

that uth distinct ()h  query made during the experiment will be on )(||...
abghcg ⋅ .

Given the challenge ( pg, , pg a mod , pg b mod ), D  sets iU ’s public key as 

pgY ir
i mod=  and its private key as ir  for all iU },...{∈ 1 PNUU .

During the experiment, D  answers Adver ’s queries as follows.  
1. Hash query. D  answers all ()h  queries at random, just like a real random oracle 

does, and records the (query, response) pair in its hL  list to keep consistent answers.  

2. Corrupt(U , K) query. If U ∈ {A, B, C}, then D gives up; otherwise, D  hands 

in all internal of U  to Adver , and updates U ’s key pair as K.

3. Reveal( 1U , 2U , 3U , l ) query. D  answers all reveal queries in normal cases 

(reveals the session keys), except that if Adver  asks i
CBA ,,Π , j

CAB ,,Π  and n
BAC ,,Π  a 

Reveal query, then D  gives up.   

4. Send ( 1U , 2U , 3U , l , m )query. D  answers all Send queries as specified by a 

normal oracle, except that if Adver asks i
CBA ,,Π , j

CAB ,,Π  and n
BAC ,,Π Send query. 

The queries are processed, according to the following rules: 
4.1 If ( ∏ l

UUU 321 ,,
∉ { i

CBA ,,Π , j
CAB ,,Π  and n

BAC ,,Π }), then follows the protocol 

specification to generate its outputs. Depending on which step (1~6) of this query, we 

have the following situations: 
For Step 1, randomly chooses an integer 

1−∈ pZw  and outputs sid || wg ||
1UCert .

D also records the data (i, 1U , 2U , 3U , sid, (w, pg w mod )) in his Send-list.  

For Step 2, if the input m= sid || x || UCert  conforms to the format of Step 1, then 
D randomly chooses an integer 1−∈ pZw  and computes px w mod . D consults 

its hL  list to check whether an entry of the form ( px w mod ,α ) exits. If so, it 

takes α = )mod( pxh w ; otherwise, it randomly chooses an integer α  and stores 
( px w mod ,α ) in hL  list. It outputs sid || x || UCert || wg ||

1UCert || pg modα .

D also records the data (i, 1U , 2U , 3U , sid, ( x , w, pg w mod , px w mod ,α )) 

in its Send-list. 
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For Step 3~6, D follows the protocol specification and responds similarly as 

above, except that it will consult in its Send-list to compute the corresponding 

session key and use the corresponding private key to generate the signature. Upon 

receiving the input, it also follows the protocol specification to verify the 

signature and the message to decide whether accept the session key.  
4.2 If ( ∏ l

UUU 321 ,,
∈ { i

CBA ,,Π , j
CAB ,,Π  and n

BAC ,,Π }), then D generates the output as 

follows. 
If ∏ l

UUU 321 ,,
= i

CBA ,,Π  and it corresponds to step 1, D randomly chooses an 

integer x  and outputs the outgoing message as (i, 1U , 2U , 3U , sid, xg ,

ACert ). D also records the data in its Send-list.  

If 1U = B and it corresponds to step 2, D randomly chooses an integer y , sets 
)( xyghg  to be ag  (the challenge from the CDHP problem) and outputs the 

outgoing message as (i, 1U , 2U , 3U , xg , ACert , yg , BCert , ag ). If there 

is already an entry of the form ( α,xyg ) for some α  in its hL  list, it 
re-selects the value y . Since D does not know the actual value of a , it 

records ( ?,ag xy ) in the hL  list. It also records (i, 1U , 2U , 3U , sid,
xg , ACert , yg , BCert , ag ) in its Send-list. 

If 1U = C and it corresponds to step 3, D sets its ephemeral value as bg
(another challenge from CDHP) and computes the corresponding signature as 

specified by the protocol. Since D can access the private key, it can generate 

the signature. It outputs the outgoing message as (i, 1U , 2U , 3U ,

sid || xg || yg || ag || bg || CCert || (...)CS , and records the data in the Send-list. 

For other steps, D accesses the corresponding private key/public key to 

generate the signature and to verify the received signature as specified in the 

protocol. It also records the data in the Send-list. 

There are the following possible results for the above experiment: 

1. Adver  does not make its queries in such a way that i
CBA ,,Π  has accepted the session, 

then D  gives up. 

2. Adver  and its oracles do not make u distinct hash oracle calls before Adver  asks its 

Test query, then D  gives up.   
3. Adver does make its queries in this way, then i

CBA ,,Π  will accept the session and 
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hold the key formed )||(... abgh .

4. If case 3 does happens and the u th distinct query to hash is made on value abg||... ,

then D  stops and outputs abg .

If the uth distinct ()h  query made by Adver  and its oracles is on abg||... , then D

certainly wins its experiment. Therefore, the probability that D  outputs the correct value 
abg  is: Pr[ hQ ]/ (

hSp NNN 3 ) )/()(≥
3

hSP NNNkη , which is non-negligible. This 

contradicts the CDHP assumption. We, therefore, conclude that )(kη  must be negligible 

and so is )(kAdv Adver .     


