
資訊管理學報　第十八卷　第二期 215

Secure Tripartite STS key Agreement Protocol in

Random Oracle Model1

Chin-Feng Lee

Department of Information Management, ChaoYang University of Technology

Hung-Yu Chien*

Department of Information Management, National Chi Nan University

Chi-Sung Lai

Department of Electrical Engineering, National Cheng Kung University

Abstract
The Station-to-Station (STS) protocol is a well known two-party key agreement scheme

that provides mutual entity authentication, key confirmation and forward secrecy. Al-Riyami

and Paterson (2003) extended the STS protocol to the tripartite case, which is called TAKC-STS

and is believed to be secure and pass-optimal for tripartite key confirmation protocols. However,

in this paper, we will show that the TAKC-STS protocol cannot resist the man-in-the-middle

attack and the insider attack. We then propose a secure tripartite STS protocol to conquer the

weaknesses, and prove the security in the random oracle model.

Key words : �security, key agreement, insider attack, STS, forward secrecy, man-in-the-

middle attack

* Corresponding Author
1 Acknowledgments: This work is partially supported by partially supported by Taiwan National Science

Council with project number NSC97-2221-E-260-008-MY2, NSC 98-2221-E-324-020 and NSC 99-2219-E-
006-011.

資訊管理學報　第十八卷　第二期216

安全的三方式 STS 金鑰協訂

李金鳳

朝陽科技大學資訊管理系

簡宏宇*

國立暨南國際大學資訊管理學系

賴溪松

國立成功大學電機工程學系

摘要

著名的STS 通訊協訂可提供雙方認證、金鑰確認、及向前安全等功能。在 2003年Al-
Riyami 及Paterson 學者將 STS 協訂擴充成三方式認證金鑰，並稱之為 TAKC-STS 協訂；
迄今，學界認為TAKC-STS 協訂可提供足夠安全並可達成最好的回合數。此篇論文將指
出此機制無法抵擋中間人攻擊及內部攻擊；我們也將提出一安全的三方式認證金鑰並證

明其安全。

關鍵字：��安全、金鑰協商協議、內部攻擊、STS、向前安全、中間人攻擊

* 通訊作者

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 217

1. Introduction

The Station-to-Station (STS) protocol is a well known two-party key agreement scheme

based on classic Diffie-Hellman that provides mutual key and entity authentication. STS was

originally presented in 1987 in the context of ISDN security [18], finalized in 1989 and generally

presented in 1992 [13]. Important features of the STS protocol include no timestamps, key

confirmation and perfect forward secrecy. Its explicit key confirmation makes it an authenticated

key agreement with key confirmation (AKC) protocol. STS has inspired the following design of

many two-party key agreement schemes like [10, 11, 12, 17, 23].

Due to the practical importance, the study of tripartite (three-party) key agreement schemes

has attracted the attention of many researchers recently like [1, 2, 8, 9, 14, 15, 16, 20, 21]. A

tripartite key agreement protocol allows three parties establish session keys. The three-party (or

tripartite) case is of most practical importance not only because it is the most common size for

electronic conferences but also because it can be used to provide a range of services for two

parties communicating. For example, a third party can be added to chair, or referee a conversation

for ad hoc auditing, data recovery or escrow purposes [1, 2, 15]. It can also facilitate the job of

group communication.

However, many existing tripartite key protocols like [1, 2, 14, 15, 16, 20] suffer distinct

degree of security weaknesses. Joux’s scheme cannot resist the basic man-in-the-middle attack,

Shim‘s scheme [20] was found to be vulnerable to the key compromise impersonation attack, and

the Lin-Lin scheme [16] did not consider the insider attack. In the insider attack [8, 9], an insider

A might be able to fool B into believing that they have participated in a protocol run with C, while

in fact C has not been active. This kind of insider attack could result in serious fraud and loss, if

the impersonated C acts as an on-line escrow agent or a referee. To resist the insider attack,

Al-Riyma and Paterson [1, 2] extended the two-party STS protocol to the tripartite case, which is

called the Tripartite Authenticated Key Confirmation STS (TAKC-STS) protocol and TAKC-STS

has been claimed and believed to be secure against insider attack, man-in-the-middle attack and

providing key confirmation (even though they did not formally proved this protocol in the original

paper, and the previous models like [3, 4, 6, 19] did not cover insider attack). However, we find

that the TAKC-STS protocol cannot resist the basic man-in-the-middle attack and the insider

attack, and fails to commit key confirmation.

資訊管理學報　第十八卷　第二期218

In this paper, we will show the weaknesses, and then propose a secure tripartite STS

protocol that conquers the security weaknesses. The security of the proposed tripartite STS

protocol is examined in the random oracle model. However, we should note that, as Canetti et al.

[7] had noted, a protocol proved secure in the random model does not imply there exist any

secure implementations of the protocol in the real world, instead it serves as an engineering

approach to rule out in-secure designs. Another tool used to verify the conformance and

security of a protocol is Burrows et al,’s BAN logic [5]; however, in our opinions, BAN logic is

strong in conformance testing but weak in security proof because there exist quite a few security

protocol proved in BAN logic has been reported in-secure like [12]. Therefore, we still apply

random oracle model to prove the security.

2. Security weaknesses of TAKC-STS
Diffie, van Oorschot and Wiener [13] proposed a three-pass, two party key agreement

protocol, the STS protocol, to defeat man-in-the-middle attacks. Al-Riyma and Paterson [1, 2]

extended the STS protocol to three-parties and six-pass key confirmation protocol in the

non-broadcast environment. This protocol is called the TAKC-STS protocol in this paper.

TAKC-STS has been believed to be secure. However, this section will show the weaknesses.

2.1 Review of TAKC-STS protocol

In the protocol below, an appropriate prime p and a generator g for the multiplicative
group *

pZ are selected. Notation ag denotes pg a mod , and we omit modulo p operations in

the rest of this paper for simplicity. *,, pZcba ∈ are randomly ephemeral values selected by A,

B and C respectively. AI denotes the identity of A , ACert denotes the public key certificate of
A, ()AS denotes A’s signature, and ()

ABCKE denotes symmetric encryption under the session

key ABCK . The TAKC-STS protocol is depicted as follows.

TAKC-STS

A → B : ag || ACert ; (1)

B → C : ag || ACert || bg || BCert || abg (2)
C → A : bg || BCert || cg ||

CCert || bcg ||
ABCKE ()||||(XIIS BAC) , (3)

 where cba gggX ||||=

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 219

A → B : cg || CCert || acg ||
ABCKE ()||||(XIIS BAC)||

ABCKE ()||||(XIIS CBA) (4)

B → C :
ABCKE ()||||(XIIS CBA)||

ABCKE ()||||(XIIS CAB) (5)

B → A :
ABCKE ()||||(XIIS CAB) (6)

Entity A initiates the protocol by sending the message in (1). After that, B forwards the

message, his ephemeral public key bg and abg to C, where abg is computed using ag and
b. After receiving the messages in (2), C is able to compute the session key ABCK =

pg cab mod)(and uses this key to encrypt his signature)||||(XIIS BAC . Upon receiving
the messages in (3), A can compute ABCK = pg abc mod)(and sends the messages in (4).

Likewise, B can compute ABCK = pg bac mod)(and sends the messages in (5). The

signatures in (3-6) are encrypted using the key ABCK . So, if each receiver can use his key to

decrypt the encrypted signature then he is assured of the session key. This provides key

confirmation function.

2.2 Man-in-the-middle attack on TAKC-STS

Now we show the man-in-the-middle-attack on the TAKC-STS protocol. Here E denotes the

adversary sitting between entities A, B, and C. The notation CA E→/ means that the messages

sent by A to C are intercepted by E, and the notation A(E) C means that E impersonates A to
send messages to C.

CABK denotes the session key computed by C and to be used among A, B

and C.
AECABK →

 denotes the session key was originally computed by C, but is modified by the

adversary E for A. *,, pZvut ∈ are randomly ephemeral values selected by E.

The key idea behind the attack is that, given xg , yg and zg , one cannot compute the

value xyg and cannot verify whether zg = xyg . Therefore, the adversary can modify the

ephemeral D-H values abg , bcg and acg without the receivers’ notice. Applying this

technique, the adversary can control the session key computed by each receiver respectively, and

uses the fake session keys to re-encrypt each signer’s signature. The attack scenario is as follows.

A → B : ag || ACert ; (1)

B E→/ C : ag || ACert || bg || BCert || abg (2)

B (E)→ C : ag || ACert || bg || BCert || tg (2’)

資訊管理學報　第十八卷　第二期220

C E→/ A : bg || BCert || cg || CCert || bcg ||
CABKE ()||||(XIIS BAC), (3)

 where cba gggX ||||= and
CABK = tcg

C (E)→ A : bg || BCert || cg || CCert || ug ||
AECABKE

→
()||||(XIIS BAC), (3’)

 where
AECABK →

= uag

A E→/ B : cg || CCert || acg ||
AECABKE

→
()||||(XIIS BAC)||

BCAKE ()||||(XIIS CBA), (4)

where
AECABK →

=
BCAK = uag

A(E)→ B: cg || CCert || vg ||
BECABKE

→
()||||(XIIS BAC)||

BBCEAKE
→

()||||(XIIS CBA), (4’)

where
BECABK →

=
BBCEAK →

= vbg

B E→/ C :
BBCEAKE

→
 ()||||(XIIS CBA)||

CBAKE ()||||(XIIS CAB), (5)

 where
BBCEAK →

=
CBAK = vbg

B (E)→ C :
CBCEAKE

→
 ()||||(XIIS CBA)||

CCEBAKE
→

 ()||||(XIIS CAB), (5’)

 where
CBCEAK →

 =
CCEBAK →

=
CABK = tcg

B E→/ A :
CBAKE ()||||(XIIS CAB) (6)

B (E)→ A :
ACEBAKE

→
 ()||||(XIIS CAB) , (6’)

 where
ACEBAK →

= AECABK →
=

BCAK = uag

The adversary E starts to intercept the messages from Pass (2), where the messages sent by B

to C are intercepted by E. E forwards the intercepted data except that abg is replaced with tg
in (2’). Upon receiving the modified data, C wrongly believes that the Diffie-Hellman (D-H) key
between A and B is tg and computes his session key

CABK = tcg . C then sends the data in (3)

that include the encryption of C’s signature using the key
CABK , but the messages are

intercepted by E. Since E can compute the key
CABK , he can decrypt the data in (3) to derive C’s

signature)||||(XIIS BAC . E replaces the D-H key between B and C with ug and encrypts
C’s signature)||||(XIIS BAC using the key

AECABKE
→

= uag in Pass (3’) so that A will

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 221

wrongly accept the key confirmation data
AECABKE

→
()||||(XIIS BAC), because A will

compute his session key
BCAK = uag =

AECABK →
 and can use this key to derive C’s signature

from
AECABKE

→
()||||(XIIS BAC). So A will send the messages in Pass (4), where the

messages are intercepted by E. E replaces the D-H key acg between A and C with the key vg ,

and encrypts A’s and C’s signatures using the key vbg in (4’) so that B will wrongly compute the

key as vbg and will use this key to derive A’s and C’s signatures. B also uses this wrong key to

encrypt his signature in (5), where the messages are intercepted by E, too. E re-encrypts the
signatures in (5’) such that C can use his computed key

CABK = tcg to derive the signatures.

This makes C wrongly believe that A and B uses the same key
CABK , but actually they do not. B

sends his key confirmation to A in (6), but the message is modified by E in (6’) such that A can use
his wrong key uag to decrypt the encrypted signature.

The key factor of this attack is that a receiver cannot verify the received D.-H. key even if he
has the two ephemeral values ag and bg . So, the attacker can replace the D.-H. key with a

random value chosen by him without the receiver’s notice. Therefore, he can control the session

keys computed by A, B and C respectively. The attacker also use these fake keys to re-encrypt A’s,

B’s and C’s signatures such that the designated receivers can use the wrong key to decrypt the

encrypted signatures. These factors make the attack successful. Finally, the adversary E shares the
key

ACEBAK →
=

AECABK →
=

BCAK = uag with A, the key
BECABK →

=
BBCEAK →

=
CBAK = vbg

with B, and the key CBCEAK →
 = CCEBAK →

 =
CABK = tcg with C respectively. Unfortunately,

A, B and C wrongly believe that they share the same key with their designated receivers. The

main-in-the-middle attack succeeds.

2.3 Insider attack

In addition to the above attack, we will show that an insider (say B) can easily fool one party

(say C) into accepting a wrong key such that C will be excluded from the communications. This

might result in serious risk, for example if C acts as an on-line escrow agent, an auditor or a

referee. If B could impersonate C to A, then B can communicate with or performing transactions

with A; whereas A would do the transactions or communications only if C (the referee) is

monitoring the contents on-line. With no referee involved, this might cause serious risk for A. We
demonstrate one example attack as follows. In the following, the notation

ABCABK
→)(

 denotes

that the key was originally computed by C for A but is modified by B.

資訊管理學報　第十八卷　第二期222

A → B : ag || ACert ; (1)

B → C : ag || ACert || bg || BCert || tg (2)

C B→/ A : bg || BCert || cg || CCert || bcg ||
CABKE ()||||(XIIS BAC), (3)

 where cba gggX ||||= and
CABK = tcg

C (B)→ A : bg || BCert || cg || CCert || bcg ||
() ABCABKE

→
()||||(XIIS BAC), (3’)

 where
ABCABK

→)(
= abcg

A → B : cg || CCert || acg ||
ABCABKE

→)(
()||||(XIIS BAC)||

BCAKE ()||||(XIIS CBA), (4)

where
ABCABK

→)(
=

BCAK = abcg

B → C :
CBBCAKE

→)(
 ()||||(XIIS CBA)||

CCBAKE
→

()||||(XIIS CAB), (5)

 where
CCBAK →

=
CBBCAK

→)(
=

CABK = tcg

B → A :
CBAKE ()||||(XIIS CAB) (6)

 where
CBAK = abcg

The goal of the inside attacker, B, is to let C accept a wrong key CABK = tcg , whereas B and A
share the same key

BCAK =
CBAK = abcg so that C will be excluded from the communications. In

Pass (2), B honestly sends the two ephemeral values ag and bg , but, instead of a correct D-H
key abg , sends a wrong value tg such that C will wrongly compute

CABK = tcg . In order to

successfully cheat C and A, B should intercept the messages in Pass (3), and replaces

CABKE ()||||(XIIS BAC) with
AECABKE

→
()||||(XIIS BAC) in pass (3’) such that A can

decrypt the message without noticing the cheating. A can generate the correct messages in Pass

(4), and B uses the wrong key tcg to encrypt the signature such that C will not notice the
cheating in Pass (5). Finally, A and B share the same key

BCAK =
CBAK = abcg , but C owns a

wrong key tcg .

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 223

3. Secure Tripartite STS (Tri-STS) protocol
To conquer the security weaknesses of TAKC-STS, we, based on the CDHP problem and

cryptographic one-way hash function, shall propose a new tripartite STS protocol. The security of

the proposed scheme can be proved in modified Bellare-Rogaway model [8, 10].

Figure 1. Tripartite STS protocol

Definition 1. Computational Diffie-Hellman problem (CDHP): Given pg a mod

and pg b mod , where a and b are random numbers form 1−qZ , compute

pg ab mod .
Now we are ready to introduce our Tri-STS protocol. In the protocol below, an appropriate

prime p and a generator g for the multiplicative group *
pZ are selected. sid denotes the

session identifier that can uniquely identify one session from others, ()AS denotes the signature

of entity A and the underlying signature scheme (for example, [22]) is secure against adaptively
chosen message attack. ()h denotes a cryptographic one-way function, and can be used as a key

derivation function. Notation ag denotes pg a mod , and we omit modulo p operations in the
rest of this paper for simplicity. *,, pZcba ∈ are randomly ephemeral values selected by A, B

and C respectively. ABCK denotes the final session key, AI denotes the identity of A , and

ACert denotes the public key certificate of A. We describe the protocol in a non-broadcast

environment, and we can easily modify it with less message runs if broadcast environment is

available. The protocol is depicted in Figure 1, and is described in the following.

A B C

1. sid || ag || ACert 2. sid || ag || ACert || bg || BCert ||)(abghg

3. sid || ag || bg || ||)(abghg
cg (...)|||| CC SCert4. sid || bg || BCert || ||)(abghg cg

(...)|||| CC SCert || (...)BS

5. sid || (...)AS 6. sid || (...)AS || (...)BS

資訊管理學報　第十八卷　第二期224

(1) A → B : sid || ag || ACert

(2) B → C : sid || ag || ACert || bg || BCert ||)(abghg

(3) C → B : sid || ag || bg ||)(abghg || cg || CCert ||)(XSC

, where C computes)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ and

generates its signature on ||||||||||||(ba
CBA ggIIIsidhX = cgh gg

ab
||)().

(4) B → A : sid || bg || BCert ||)(abghg || cg || CCert ||)(XSC ||)(XSB ,

, where B computes)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ and

generates its signature on ||||||||||||(ba
CBA ggIIIsidhX = cgh gg

ab
||)().

(5) A → B : sid ||)(XS A

, where A computes)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ and

generates its signature on ||||||||||||(ba
CBA ggIIIsidhX = cgh gg

ab
||)().

(6) B → C : sid ||)(XS A ||)(XSB

Step 1 is the same as that of the TAKC-STS protocol, but we requires entity B to convey the
value)(abghg to entity C in step 2 such that C can compute the session key

)()(abghc
ABC ghK ⋅= using its random integer c. C also generates its signature on the ephemeral

public values)||||||||||||||()(cghba
CBA ggggIIIsidhX

ab
= . The final session key is

)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ . Since both A and B can

compute abg ,)(abgh and)(abghg , they can also compute the value)(abghcg ⋅ and the session

key ABCK . In steps 4~6, A and B respectively generate the signatures on the ephemeral

public values. Only when the signatures from the communicating parties are successfully verified,

A , B and C will accept the session key.

It is easy to extend to key confirmation function by appending the hash value of the session

key in the message to be signed. Since each session key depends on the ephemeral values X and

the signatures is generated on the related data- identities and the ephemeral values, the proposed

scheme achieve the forward secrecy, key confirmation, and explicit authentication. In the next

section, we will prove the security in the random oracle model.

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 225

4. Security Notations and Proof
The security of the proposed schemes concerns the privacy of the authenticated session key.

To capture the security of the tripartite key agreement scheme, we should consider the

in-distinguishability property [3, 4, 6, 10], and the resistance to key-compromise impersonation

and the insider attack. In all the models of BR95 [3] and BPR2000 [4], a session with corrupted

entities is not considered as fresh; therefore, it cannot model the key-compromise impersonation

and the insider attack. We, therefore, prove the in-distinguishability in a modified model [8, 10],

and gain the advantage of insider attack and key-compromise impersonation attack related to the

advantage of forging advantage of underlying signature scheme. Regarding the

in-distinguishability, we adopt the BPR2000 model with some modifications- (1) extension to the

tripartite case, and (2) extension for the Corrupt query.

4.1 Security notations

The in-distinguishability

In the model, the adversary Adver is a probabilistic machine that controls all the
communications that take place between parties by interacting with a set of i

UUU 321 ,,Π oracles

(i
UUU 321 ,,Π is defined to be the ith instantiation of an entity 1U in a specific run, and 2U and

3U are the entities with whom 1U wishes to establish a session key). The pre-defined oracle

queries are described informally as follows.

- Send(1U , 2U , 3U , i, m) allows Adver to send some message m of his choice to
i

UUU 321 ,,Π at will. i
UUU 321 ,,Π , upon receiving the query, will compute what the protocol

specification demands and return to Adver the response message and/or decision. If
i

UUU 321 ,,Π has either accepted with some session key or terminated, this will be made

known to Adver .

 Reveal(1U , 2U , 3U , i) query allows Adver to expose an old session key that has
been previously accepted. i

UUU 321 ,,Π , upon receiving the query and if it has accepted

and holds some session key, will send this session key back to Adver .

Corrupt(1U , EK) query allows Adver to corrupt the entity 1U at will, and thereby

learns the complete internal state of the entity. The corrupt query also allows Adver to

overwrite the long-term key of the corrupted entity to the value of his choice (i.e., EK).

(1) A → B : sid || ag || ACert

(2) B → C : sid || ag || ACert || bg || BCert ||)(abghg

(3) C → B : sid || ag || bg ||)(abghg || cg || CCert ||)(XSC

, where C computes)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ and

generates its signature on ||||||||||||(ba
CBA ggIIIsidhX = cgh gg

ab
||)().

(4) B → A : sid || bg || BCert ||)(abghg || cg || CCert ||)(XSC ||)(XSB ,

, where B computes)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ and

generates its signature on ||||||||||||(ba
CBA ggIIIsidhX = cgh gg

ab
||)().

(5) A → B : sid ||)(XS A

, where A computes)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ and

generates its signature on ||||||||||||(ba
CBA ggIIIsidhX = cgh gg

ab
||)().

(6) B → C : sid ||)(XS A ||)(XSB

Step 1 is the same as that of the TAKC-STS protocol, but we requires entity B to convey the
value)(abghg to entity C in step 2 such that C can compute the session key

)()(abghc
ABC ghK ⋅= using its random integer c. C also generates its signature on the ephemeral

public values)||||||||||||||()(cghba
CBA ggggIIIsidhX

ab
= . The final session key is

)(||||||||||||||(
abghcba

CBAABC ggggIIIsidhK =)||)(abghcg ⋅ . Since both A and B can

compute abg ,)(abgh and)(abghg , they can also compute the value)(abghcg ⋅ and the session

key ABCK . In steps 4~6, A and B respectively generate the signatures on the ephemeral

public values. Only when the signatures from the communicating parties are successfully verified,

A , B and C will accept the session key.

It is easy to extend to key confirmation function by appending the hash value of the session

key in the message to be signed. Since each session key depends on the ephemeral values X and

the signatures is generated on the related data- identities and the ephemeral values, the proposed

scheme achieve the forward secrecy, key confirmation, and explicit authentication. In the next

section, we will prove the security in the random oracle model.

資訊管理學報　第十八卷　第二期226

1 Convergent validity is evaluated by measuring the correlation of each item representing the construct with the aggregate
measure for that construct less the focal item. This approach assumes that the total score is valid; thus, the extent to
which the item correlates with the total score is indicative of construct validity for the item (Kerlinger, 1986)

2 Discriminate validity is the degree to which a construct differs from other constructs and is usually verified through factor
analysis (Kerlinger, 1986).

This query can be used to model the real world scenarios of an insider co-operating with

the adversary or an insider who has been completely compromised by the adversary.
Test(1U , 2U ,

3U , i) query: If i
UUU 321 ,,Π has accepted with some session key and is

being asked a Test(1U , 2U , 3U , i), then depending on a random bit b, Adver is

given either the actual session key or a session key drawn randomly from the session key

distribution.

The definition of security depends on the notations of partnership of oracles and

in-distinguishability [3, 4]. In the BPR2000 model, partnership of oracles is defined using SIDs

(session identifiers). The definition of partnership is used in the definition of security to restrict

the adversary’s Reveal and Corrupt queries to oracles that are not partners of the oracles whose

key the adversary is trying to guess [3, 4].
Partnership [3]: The oracles i

UUU 321 ,,Π , j
UUU 312 ,,Π and n

UUU 123 ,,Π are partners if, and only if,

the three oracles have accepted the same session key with the same SID, have agreed on the same
set of entities, and no other oracles besides i

UUU 321 ,,Π , j
UUU 312 ,,Π and n

UUU 123 ,,Π have accepted

with the same SID.

Definition of security in both BR95 and BPR2000 also depend on the notation of freshness of
the oracle to whom the Test query is sent [3, 4, 19]. For i

UUU 321 ,,Π to be fresh, the adversary in

the BR95 model is not restricted from sending Corrupt queries to entities apart from the entities of
oracles i

UUU 321 ,,Π and its partner oracles j
UUU 312 ,,Π and n

UUU 123 ,,Π (if such partners exist). We,

therefore, adopt the definition of freshness of BR95 model.

Definition 3. Freshness [3]: i
UUU 321 ,,Π is fresh (or it holds a fresh session key) at the end of

execution, if, and only if, oracle i
UUU 321 ,,Π has accepted with or without a partner oracles

j
UUU 312 ,,Π and n

UUU 123 ,,Π , all the oracles i
UUU 321 ,,Π , j

UUU 312 ,,Π and n
UUU 123 ,,Π (if such an

partner oracles exist) have not been sent a Reveal query, and the entities 1U , 2U and 3U of
oracles i

UUU 321 ,,Π , j
UUU 312 ,,Π and n

UUU 123 ,,Π (if such partners exist) have not been sent a

Corrupt query.

Security is defined using the game G, played between the adversary Adver and a collections

of i
UUU zyx ,,Π oracles for players xU , yU and zU },...,,{ 21 PNUUU∈ and instances

},...,1{ SNi∈ . The adversary Adver runs the game simulation G with setting as follows.

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 227

Stage 1: Adver is able to send Send, Reveal and Corrupt queries in the simulation.

Stage 2: At some point during G, Adver will choose a fresh session and send a Test query

to the fresh oracle associated with the test session. Depending on the randomly chosen bit b,

Adver is given either the actual session key or a session key drawn from the session key

distribution.

Stage 3: Adver continues making any Send, Reveal and Corrupt oracle queries to its

choice.

Stage 4: Eventually, Adver terminates the game simulation and output its guess bit b’.

Success of Adver in G is measured in terms of Adver ’s advantage in distinguishing

whether Adver receives the real key or a random value. Let the advantage function of Adver
be denoted by)(kAdv Adver , where k is the security parameter and)(kAdv Adver =2Pr[b=b’]-1.

Key-compromise impersonation

The participating entities (except the adversary) are always considered honest in all of the

BR95 model, the BPR2000 model and the Canetti-Krawczyk model [6], and a session with any

corrupted entity is not considered as fresh for testing. It, therefore, cannot capture the

key-compromise impersonation attack. However, we can gain the advantage of key-compromise

impersonation to that of forging a signature with one private key belonging to one of the three

communicating parties. In our tripartite scheme, the adversary who has compromised 1U ’s

private key should try to impersonate 2U to both 1U and 3U .Therefore, the adversary should

generate 2U ’s signature on the fresh sid and ephemeral public keys. Therefore, his advantage of

impersonation is directly related to the advantage of forging 2U ’s signature.

Insider attack
For the tripartite case involving entities 1U , 2U and 3U , we consider the following two

scenarios are non-sense: (1) 1U and 2U co-operatively impersonate 3U to themselves, and

(2) 1U impersonates 2U and 3U simultaneously to himself. So, the only meaningful attack

scenarios are like that 1U impersonates 2U to 3U such that 3U wrongly believes that itself,

1U and 2U will share the same key. In our protocol, 3U will complete the protocol and

compute the session key if only if 3U has validated the signatures from 1U and 2U . Of course,

1U (the inside attacker) can generate his own signature. But, to generate valid signatures on the
session-bound data sidh(||)(||||||||||||

321

abghcba
UUU ggggIII) on behalf of 2U , 1U

should access 2U ’s private key. So, the inside attacker’s (1U ’s) advantage in impersonating

2U is the same as that advantage of forging 2U ’s signature. Since the underlying signature

資訊管理學報　第十八卷　第二期228

scheme is secure against adaptively chosen message attack and 2U ’s ephemeral public key

pg b mod is random and fresh, the advantage is negligible. Now we are ready to define the

security.

Definition 4 (Secure tripartite key agreement protocol): A tripartite key agreement protocol is

secure in our model if the following thee requirements are satisfied:

1. Validity: When the protocol is run among three oracles in the absence of a malicious

adversary, the three oracles accept the same key.

2. Indistinguishability: For all probabilistic, polynomial-time adversaries Adver ,

)(kAdv Adver is negligible.

3. Security against insider impersonation and key-compromise impersonation: Even

an insider (and a key-compromise impersonator) cannot impersonate another entity to the

third entity and complete the session run with the third one.

4.2 Security proof

Theorem 1. The proposed tripartite STS key confirmation protocol is secure in the sense of

Definition 4 if the underlying digital signature scheme is secure against the adaptively chosen

message attack and the CDHP is hard.

Proof: the proof is given in the appendix.

5. Conclusions
This paper has shown the man-in-the-middle attack and the insider attack on the TAKC-STS

protocol. To conquer the security weaknesses, we have proposed a new tripartite STS protocol,

which preserves the practical merits of the STS protocol. The security of the proposed protocol is

proved in the random oracle model.

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 229

References
1. Al-Riyami, S. S., and K. G. Paterson. “Tripartite Authenticated Key Agreement Protocols from

Pairings.”IMA Conference on Cryptography and Coding, LNCS 2898, Springer-Verlag, 2003,

pp. 332-359.

2. Al-Riyami, S. S., and K. G. Paterson.“Authenticated three party key agreement protocols from

pairings. ”Cryptology ePrint Archive, Report 2002/035.

3. Bellare, M., and P. Rogaway.“Provably secure session key distribution: The three party

case. ”27th ACM Symposium on the Theory of Computing, ACM press, 1995, pp. 57-66.

4. Bellare, M., D. Pointcheval, and P. Rogaway.“Authenticated key exchange secure against

dictionary attacks.” Eurocrypt 2000, LNCS 1807, Springer, pp. 139-155.

5. Burrows, M., Abadi, M., Needham, R. “A logic of authentication.” ACM TRANSACTIONS

ON COMPUTER SYSTEMS, (8:1), 1990, 18-36.

6. Canetti, R., and H. Krawczyk.“Analysis of key-exchange protocols and their use for building

secure channels.”Eurocrypt, LNCS 2045, Springer, 2001, pp. 451-472.

7. Canetti, R., Goldreich, O., and Halevi, S. “The random oracle methodology, revisited.” Journal

of the ACM , (51:4), 2004, 557-591.

8. Chien, H. Y.“ID-based Tripartite Multiple Key Agreement Protocol facilitating Computer

Auditing and Transaction Refereeing.” Journal of Information Management , (13:4) , 2006,

185~204.

9. Chien, H. Y. “Comments: Insider attack on Cheng et al.'s pairing-based tripartite key agreement

protocols.” Cryptology ePrint Archive: Report 2005/013.

10. Chien, H. Y., and R. Y. Lin. Improved ID-based security framework for ad hoc network.” Ad

Hoc Networks, (6:1), Jan 2008, 47-60.

11. Chien, H. Y., Wang, R. C., and Yang, C. C. “Note on Robust and Simple Authentication

Protocol.”The Computer Journal, (48:1), 2005, 27- 29.

12. Chien, H. Y., Wu, T. C., Jan, J. K. and Tseng, Y. M. ”Cryptanalysis of Chang-Wu’s

Group-oriented Authentication and Key Exchange Protocols”, Information Processing Letters,

Amsterdam, (80:2), Oct. 2001, pp. 113-117.

13. Diffie, W., P.C. van Oorshot, and M. Wiener. “Authentication and authenticated key

exchanges.”Designs, codes, and Cryptography (2:2), 1992, 107-125.

資訊管理學報　第十八卷　第二期230

14. Horng, G., C.-L. Liu, and H.-Y. Liu. “Security Analysis of a Tripartite Authenticated Key

Agreement Protocol Based on Weil Pairing.” ICS 2004 - International Computer Symposium,

Taiwan.

15. Joux, A., A “One round protocol for tripartite Diffie-Hellman.” ANTS IV, LNCS1838,

Spring-Verlag, 2000, pp. 385-394.

16. Lin, C. H., and H. H. Lin. “Secure One-Round Tripartite Authenticated Key Agreement Protocol

from Weil Pairing.” Proceedings of International Conference on Advanced Information

Networking and Applications (AINA 2005), (2), March 25-30, 2005 , pp. 135-138.

17. Lu, R., Cao, Z., Wang, S. B., Bao, H. Y.. “A New ID-Based Deniable Authentication Protocol.”

Informatica , (18 :1), 2007, 67-78.

18. O'Higgins, B., W. Diffie, L. Strawczynski, and R. Hoog. “Encryption and ISDN - A Natural

Fit." International Switching Symposium (ISS87), 1987.

19. Raymond, C. K. K., Colin, B., and Yvonne, H. “Examining indistinguishability-based proof

models for key establishment protocols.” ASIACRYPT 2005, LNCS 3788, Springer, pp.

585-604.

20. Shim, K. “Efficient one round tripartite authenticated key agreement protocol from Weil

pairing.” Electron. Lett. (39:2), 2003, 208-209.

21. Shim, K. “Cryptanalysis of Al-Riyami-Paterson's Authenticated Three Party Key Agreement

Protocols.”, Cryptology ePrint Archive, Report 2003/122.

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 231

Appendix
Theorem 1. The proposed tripartite STS key confirmation protocol is secure in the sense of

Definition 4 if the underlying digital signature scheme is secure against the adaptively chosen

message attack and the CDHP is hard.

Proof:

1. The validity is straightforward due to our protocol specification.

2. The security against insider impersonation (and the key-compromise impersonation) is

equivalent to the security of the underlying signature scheme. This has been discussed in

Section 4.1.

3. So, we concentrate on the in-distinguishability. The general notation of this in-distinguishable

proof is to assume an adversary Adver who can gain a non-negligible advantage in

distinguishing the test key in the game, and uses Adver to construct a breaker B that solves
the CDHP with non-negligible probability. The hash function ()h is modeled as a random

oracle here.

The proof can be divided into two cases since the adversary Adver can either gain its

advantage against the protocol by forging a participating entity’s signature or gain its advantage

against the protocol without forging a participating entity’s signature.

Case 1. Adver gains its advantage by forging a participating entity’s signature.

We denote by)](Pr[kSuccSig the probability of a successful signature forgery under

adaptively chosen message attack, and define an event SigForgery to be an event that at some
point in the game Adver asks a Send(1U , 2U , 3U , i, (...))||

1USsid query to some partner

oracles j
UUU 312 ,,Π or n

UUU 123 ,,Π such that the oracles accept, but the signature value ((...)
1US)

used in the query was not previously output by a fresh oracle. We construct an adaptive Signature

forger F against the message authentication scheme using Adver in the following game FG .

Stage 1: F is provided permanent access to the Signature oracle UO associated with its private

key of U throughout the game FG .
F randomly chooses an entity },...,{ 1 PNUUU ∈ . U is F’s guess at which Adver

will choose for the SigForgery.
F generates a list of public key/private key pairs for the entities }{\},...,{ 1 UUU

PN
.

Stage 2: F runs Adver and answers all queries from Adver . This can be easily done since F

資訊管理學報　第十八卷　第二期232

can respond to all oracle queries as required using the keys chosen in Stage 1 and UO . F also

records all the signatures it receives from UO . If, during the execution, Adver make an oracle

query that includes a forged signature for U , then F outputs the signature forgery as its own and
halts. Otherwise, F halts as Adver halts.

Since U is randomly chosen from the PN entities, the probability that U is the entity for

whom Adver generates a forgery is at least 1/ PN . Therefore, the success probability of F is

P
F NkSigForgerykSucc /)](Pr[)](Pr[≥ . Hence,

)](Pr[)](Pr[kSigForgerykSuccN F
P ≥⋅ . (A.1)

Since the underlying signature scheme is assumed to be secure against adaptively chosen

message attack and the PN is polynomial in k, the)](Pr[kSigForgery is negligible.

Case 2. Adver gains its advantage without forging a participating entity’s signature.

This part assumes that Adver gains its advantage without forging a participating entity’s

signature.

Denote Adver ’s advantage in differentiating the real session key from a random generated
key without forging a signature as)(kAdv Adver

forgeryno = |Pr[Adver succeeds in correctly

guessing]-1/2|.
Now suppose, by the way of contradiction, the)(kAdv Adver

forgeryno is non-negligible. Suppose that

there exists an oracle i
CBA ,,Π has accepted the session key of the form

)(||||||||||||||(
abghcba

CBA ggggIIIsidh)||)(abghcg ⋅ and has the partnership with fresh oracles
j

CAB ,,Π and n
BAC ,,Π . We say that Adver succeeds if at the end of Adver ’s experiment, Adver

picks i
CBA ,,Π to ask a Test query and outputs the correct bit guess. Thus, Pr[i

CBA ,,Π

succeeds]=1/2+)(kη , where)(kη is non-negligible. Now define hQ be the event that ()h
has been queried on)(||...

abghcg ⋅ by Adver or some oracle other than i
CBA ,,Π , j

CAB ,,Π and
n

BAC ,,Π . Then

Pr[Adver succeeds]= Pr[Adver succeeds| hQ]* Pr[hQ]+ Pr[Adver succeeds| hQ]*

Pr[hQ]. Since ()h is a random oracle and i
CBA ,,Π , j

CAB ,,Π and n
BAC ,,Π are fresh oracles,

Pr[Adver succeeds | hQ]=1/2. Thus 1/2+)(kη ≤ Pr[Adver succeeds | hQ]* Pr[hQ]+1/2, so

that Pr[hQ]≥)(kη . That is, given Adver picks some fresh oracle i
CBA ,,Π that has accepted

the session, then the probability that ()h has been queried on)(||...
abghcg ⋅ by Adver or some

oracle other than i
CBA ,,Π , j

CAB ,,Π and n
BAC ,,Π is non-negligible. We can, therefore, use Adver

to construct a breaker D which solves the CDHP with non-negligible probability.

D ’s task: Given pg, , pg a mod and pg b mod , where ba, are random numbers from

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 233

1−pZ , compute pg ab mod .

D ’s operation: D randomly picks BA, and C },...,U,U{U∈
PN21 , instance

},...,1{∈,, SNnji and },...,1{ hNu∈ , where PN , SN , and Nh respectively denote the number

of entities, the number of session per entity, and the number of distinct queries to ()h , and all the

three functions are polynomial function on the security parameter k. D guesses that Adver
will select i

CBA ,,Π to ask its Test query after i
CBA ,,Π has accepted the session, and also guesses

that uth distinct ()h query made during the experiment will be on)(||...
abghcg ⋅ .

Given the challenge (pg, , pg a mod , pg b mod), D sets iU ’s public key as

pgY ir
i mod= and its private key as ir for all iU },...{∈ 1 PNUU .

During the experiment, D answers Adver ’s queries as follows.
1. Hash query. D answers all ()h queries at random, just like a real random oracle

does, and records the (query, response) pair in its hL list to keep consistent answers.

2. Corrupt(U , K) query. If U ∈ {A, B, C}, then D gives up; otherwise, D hands

in all internal of U to Adver , and updates U ’s key pair as K.

3. Reveal(1U , 2U , 3U , l) query. D answers all reveal queries in normal cases

(reveals the session keys), except that if Adver asks i
CBA ,,Π , j

CAB ,,Π and n
BAC ,,Π a

Reveal query, then D gives up.

4. Send (1U , 2U , 3U , l , m)query. D answers all Send queries as specified by a

normal oracle, except that if Adver asks i
CBA ,,Π , j

CAB ,,Π and n
BAC ,,Π Send query.

The queries are processed, according to the following rules:
4.1 If (∏ l

UUU 321 ,,
∉ { i

CBA ,,Π , j
CAB ,,Π and n

BAC ,,Π }), then follows the protocol

specification to generate its outputs. Depending on which step (1~6) of this query, we

have the following situations:
For Step 1, randomly chooses an integer

1−∈ pZw and outputs sid || wg ||
1UCert .

D also records the data (i, 1U , 2U , 3U , sid, (w, pg w mod)) in his Send-list.

For Step 2, if the input m= sid || x || UCert conforms to the format of Step 1, then
D randomly chooses an integer 1−∈ pZw and computes px w mod . D consults

its hL list to check whether an entry of the form (px w mod ,α) exits. If so, it

takes α =)mod(pxh w ; otherwise, it randomly chooses an integer α and stores
(px w mod ,α) in hL list. It outputs sid || x || UCert || wg ||

1UCert || pg modα .

D also records the data (i, 1U , 2U , 3U , sid, (x , w, pg w mod , px w mod ,α))

in its Send-list.

資訊管理學報　第十八卷　第二期234

For Step 3~6, D follows the protocol specification and responds similarly as

above, except that it will consult in its Send-list to compute the corresponding

session key and use the corresponding private key to generate the signature. Upon

receiving the input, it also follows the protocol specification to verify the

signature and the message to decide whether accept the session key.
4.2 If (∏ l

UUU 321 ,,
∈ { i

CBA ,,Π , j
CAB ,,Π and n

BAC ,,Π }), then D generates the output as

follows.
If ∏ l

UUU 321 ,,
= i

CBA ,,Π and it corresponds to step 1, D randomly chooses an

integer x and outputs the outgoing message as (i, 1U , 2U , 3U , sid, xg ,

ACert). D also records the data in its Send-list.

If 1U = B and it corresponds to step 2, D randomly chooses an integer y , sets
)(xyghg to be ag (the challenge from the CDHP problem) and outputs the

outgoing message as (i, 1U , 2U , 3U , xg , ACert , yg , BCert , ag). If there

is already an entry of the form (α,xyg) for some α in its hL list, it
re-selects the value y . Since D does not know the actual value of a , it

records (?,ag xy) in the hL list. It also records (i, 1U , 2U , 3U , sid,
xg , ACert , yg , BCert , ag) in its Send-list.

If 1U = C and it corresponds to step 3, D sets its ephemeral value as bg
(another challenge from CDHP) and computes the corresponding signature as

specified by the protocol. Since D can access the private key, it can generate

the signature. It outputs the outgoing message as (i, 1U , 2U , 3U ,

sid || xg || yg || ag || bg || CCert || (...)CS , and records the data in the Send-list.

For other steps, D accesses the corresponding private key/public key to

generate the signature and to verify the received signature as specified in the

protocol. It also records the data in the Send-list.

There are the following possible results for the above experiment:

1. Adver does not make its queries in such a way that i
CBA ,,Π has accepted the session,

then D gives up.

2. Adver and its oracles do not make u distinct hash oracle calls before Adver asks its

Test query, then D gives up.
3. Adver does make its queries in this way, then i

CBA ,,Π will accept the session and

Secure Tripartite STS key Agreement Protocol in Random Oracle Model 235

hold the key formed)||(... abgh .

4. If case 3 does happens and the u th distinct query to hash is made on value abg||... ,

then D stops and outputs abg .

If the uth distinct ()h query made by Adver and its oracles is on abg||... , then D

certainly wins its experiment. Therefore, the probability that D outputs the correct value
abg is: Pr[hQ]/ (

hSp NNN 3))/()(≥
3

hSP NNNkη , which is non-negligible. This

contradicts the CDHP assumption. We, therefore, conclude that)(kη must be negligible

and so is)(kAdv Adver .

