
資訊管理學報　第十七卷　專刊 27

Mining Significant Subspaces

Anthony J.T. Lee

Department of Information Management, National Taiwan University

Ming-Chih Lin

Department of Information Management, National Taiwan University

Yun-Ru Wang

Department of Information Management, National Taiwan University

Kuo-Tay Chen

Department of Accounting, National Taiwan University

Abstract
As both the number of dimensions increases, existing clustering methods in full feature 

space are not appropriate to cluster data in databases. Thus, the subspace clustering has attracted 

more and more attention recently. In this paper, we propose a novel method to mine significant 

subspaces from all frequent subspaces, where a subspace is frequent if it contains enough 

data points. The proposed method consists of three phases. First, we generate all frequent 

2-dimensional subspaces. Second, we recursively combine frequent k-dimensional subspaces to 

generate frequent (k+1)-dimensional subspaces, k≥ 2. Finally, we adopt a greedy algorithm to 

summarize the frequent subspaces generated and select the significant ones. The experimental 

results show that the proposed method has better quality and coverage than DUSC, and better 

quality than FIRES.
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摘要

隨著資料維度的增加，現有利用全部資料維度的分群方法，已經不適用於分析高維

度的資料。因此，近年來子空間分群的方法愈來愈受重視。在本篇論文中，我們提出一

個新的方法以探勘重要的子空間。我們所提出的方法包括三個步驟，首先，我們將所有

的資料點投影到二維空間，並產生許多頻繁子空間；然後，我們利用遞迴的方式結合這

些頻繁子空間，以形成更大的頻繁子空間；最後，我們採用貪婪演算法做總結，從所產

生的頻繁子空間中選出重要的子空間。實驗結果顯示，我們所提出的方法在品質方面優

於FIRES，在涵蓋率與品質方面，皆優於DUSC。

關鍵字：��子空間探勘、子空間分群、頻繁子空間、資料探勘、貪婪演算法
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1. INTRODUCTION

Clustering is an important technique to find the relationships in many applications such 
as customer behavior analysis, document classification, and Web log analysis (Parsons et al. 
2004; Patrikainen et al. 2006). As both the number of dimensions increases, existing methods of 
clustering data in full feature space are not appropriate for these applications (Lu et al. 2007). 
Thus, the subspace clustering has attracted more and more attention recently.

The subspace clustering methods can be classified into two classes: bottom-up and top-
down, depending on the search direction (Lu et al. 2007). The bottom-up methods include 
CLIQUE (Agrawal et al. 1998), ENCLUS (Cheng et al. 1999), MAFIA (Goil et al. 1999), 
SCHISM (Sequeira & Zaki 2004), IBUSCA (Glomba & Markowska-Kaczmar 2006), FIRES 
(Kriegel et al. 2005), and DUSC (Assent et al. 2007). CLIQUE (Agrawal et al. 1998) is a 
density-based method which partitions each dimension into several intervals of equal length, 
and then uses an Apriori-like approach to find interested subspaces. Based on CLIQUE, 
ENCLUS (Cheng et al. 1999) uses entropy to cope with the criterions of coverage, density and 
correlation, where the coverage increases as the entropy decreases. MAFIA (Goil et al. 1999) 
exploits histograms to decide how many grids to be created and uses an adaptive grid-based 
algorithm to partition the dimensions. SCHISM (Sequeira & Zaki 2004) adopts the support and 
Chernoff-Hoeffding bounds as the density thresholds and searches for maximal subspaces in 
a depth-first search manner. IBUSCA (Glomba & Markowska-Kaczmar 2006) is a grid-based 
algorithm which needs a parameter to determine the density threshold, where the data space is 
split based on histograms to form dense subspaces. Based on DBSCAN, FIRES (Kriegel et al. 
2005) is a generic framework for finding the subspaces of high-dimensional data. DUSC (Assent 
et al. 2007) adopts different density thresholds for different subspaces and finds the S-connected 
clusters, where two data points in a cluster are connected to each other if the distance between 
them is within a user-specified threshold.

Generally speaking, bottom-up methods take advantage of the downward closure property 
of density to reduce the search space. The downward closure property of density means that if 
a (k+1)-dimensional subspace R is dense, all k-dimensional subspaces of R should be dense, k≥ 
2. Bottom-up methods first create bins for each dimension and select those bins with densities 
above a given threshold. Adjacent dense subspaces (or bins) are then combined to form clusters. 
The methods proceed until no more dense subspaces can be found. However, one cluster may 
be mistakenly reported as two smaller clusters. The nature of the bottom-up methods leads to 
overlapping clusters, where one instance can be in zero or more clusters.

Top-down methods include PROCLUS (Aggarwal et al. 1999), ORCLUS (Aggarwal & Yu 
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2000), FINDIT (Woo & Lee 2002), and δ-Clusters (Yang et al. 2002). PROCLUS (Aggarwal 
et al. 1999) partitions the data points to axis-aligned subspaces and refines them by a hill-
climbing approach. ORCLUS (Aggarwal & Yu 2000) is similar to PROCLUS but uses random 
sampling to improve the processing time. It uses the method of singular value decomposition 
to find arbitrarily-oriented clusters. FINDIT (Woo & Lee 2002) introduces the dimension-
oriented distance as a distance measure, where the subspaces with higher number of dimensions 
are more meaningful. δ-Clusters (Yang et al. 2002) uses the Pearson correlation to measure 
coherence among all data points. It separates data points into several clusters, and randomly 
swaps the points in different clusters to improve the quality of clusters. The top-down methods 
start by finding an initial approximation of the clusters in full feature space with equally 
weighted dimensions. Next, each dimension is assigned a weight for each cluster. The updated 
weights are then used in the next iteration to regenerate the clusters. This approach requires 
multiple iterations of expensive clustering algorithms in the full set of dimensions. Many of the 
implementations of this strategy use a sampling technique to improve performance. Top-down 
algorithms divide the dataset into several partitions so that each data point is assigned to only 
one cluster. Parameter tuning is necessary in order to get meaningful results. Often the critical 
parameters for top-down algorithms are the number of clusters and the size of subspace, which 
are often difficult to determine ahead of time. Moreover, top-down algorithms tend to find 
clusters of the same or similar size.

The subspace clustering methods mentioned above cluster data points into groups by 
merging or splitting dimensions. The top-down methods do not allow overlapping clusters, 
where every data point belongs to just one cluster. But in real world, it is not appropriate 
to assign a data point to only one cluster (Kriegel et al. 2005). In addition, most bottom-
up subspace mining methods find interested subspaces by pruning the potential subspaces 
according to monotonicity. That is, they only take a local view of subspaces to resolve this 
problem since they do not globally generate all potential subspaces to find the interested ones.

Therefore, in this paper, we propose a novel method to mine significant subspaces. 
The proposed method consists of three phases. First, we generate all frequent 2-dimensional 
subspaces. Second, we recursively combine frequent k-dimensional subspaces to generate 
frequent (k+1)-dimensional subspaces, k≥ 2. Finally, we adopt a greedy approach (Michael 
1996) to summarize all frequent subspaces found and select the significant ones.

The contributions of this paper are summarized as follows: (1) We propose a novel method 
to mine significant subspaces. (2) We adopt a greedy approach to summarize all frequent 
subspaces and select the significant ones. (3) The experimental results show that the proposed 
method has better quality and coverage than DUSC, and better quality than FIRES.

The rest of this paper is organized as follows. Section 2 describes preliminary concepts and 
problem definitions. Section 3 discusses the algorithm in detail and demonstrates how it works. 
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Section 4 shows the performance evaluation. Finally, the conclusions and future work are made 
in Section 5. 

2. PRELIMINARIES AND PROBLEM 

DEFINITIONS

Consider an input dataset D containing n data points (points for short) P1, P2, …,Pn in an 
m-dimensional data space. Each point is represented by (x1, x2, …,xm), where xi∈R and 1 ≤ i 
≤ m. We first project every point onto a pair of dimensions (or dimension pair). Since there are 
m dimensions in the data space, we have m*(m-1)/2 dimension pairs. A point, (x1, x2, …, xm), 
projected to the projected space formed by a dimension pair (di, dj) is denoted as (xi, xj), 1≤ i< 
j≤m.

To cluster the projected points into several groups in a two-dimensional projected space, 
we partition each dimension into several bins (or intervals). That is, the projected space is 
divided into several cells, where each cell may contain a group of points (point group). A cell 
denoted by (i, j) is located at the ith interval of the first dimension and the jth interval of the 
second dimension. If the number of points in a cell is not less than a user-specified density 
threshold ρ, the cell is frequent. A cell (i, j) is adjacent to another cell (i ,́ j )́ if |i-i’|≤ 1 and |j-
j’|≤ 1. The points in a frequent cell can be combined with those in the other adjacent frequent 
cells to form a larger point group. Then, we obtain a list of point groups, each of which forms a 
subspace. For example, Figure 1 shows that the points are combined into two point groups (or 
subspaces), where the projected space is divided into 4×4 = 16 cells. Similarly, we can obtain a 
list of subspaces for each dimension pair.

If a subspace is formed by l dimensions, it is called an l-subspace. To find the number 
of points in an l-subspace, we can intersect the point groups of the corresponding l*(l-1)/2 
projected dimension pairs. Consequently, every subspace is associated with a point group. A 
subspace is frequent if the number of points in the subspace is not less than a user-specified 
minimum support threshold σ. 
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Figure 1: Partitioning the points into two groups.
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For example, assume that σ = 2. Given five points in a 3-dimensional data space, we 
project them into dimensions (d1, d2) and (d1, d3). The points are divided into two frequent 
subspaces G11 = {P2, P5} and G12 = {P1, P3, P4} for the projected space formed by (d1, d2), G21 
= {P1, P4} and G22 = {P2, P3, P5} for the projected space formed by (d1, d3) as shown in Figure 2. 
Since G31 = G11∩G22 = {P2, P5} and G32 = G12∩G21 = {P1, P4}, G31 and G32 both contain two 
points. Thus, they are frequent 3-subspaces.
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Figure 2. Generating a 3-subspace. 

The objective of the proposed method is to find all frequent subspaces in a dataset with 
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significant ones from the frequent subspaces found. 
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For example, let us consider a dataset containing ten points in a 4-dimensional space, 
where the projected points in each projected space are shown in Table 1. Assume that ρ = 2 and 
σ = 2. To find frequent subspaces in the projected space formed by (d1, d2), the projected space 
is partitioned into 4×4 cells. The smallest and largest values of the first dimension of the points 
in Table 1 are 0 (P1) and 10 (P10), respectively. Thus, the first dimension is equally partitioned 
into four intervals: [0, 2.5), [2.5, 5), [5, 7.5), and [7.5, 10]. Similarly, the second dimension is 
equally partitioned into four intervals: [0, 5), [5, 10), [10, 15), and [15, 20]. In Figure 4, cell C1 
contains {P1, P2}, C2 contains {P3, P4}, C3 contains {P5, P6, P7}, C4 contains {P8}, C5 contains 
{P9}, and C6 contains {P10}. Since cells C1, C2 and C3 are frequent and adjacent to each other, 
we can combine the points in these cells together and form a point group {P1, P2, P3, P4, P5, P6, 
P7}. There are seven points in the point group. Thus, the point group (or subspace) is frequent. 
Similarly, we can obtain all frequent 2-subspaces as shown in Figure 5, where FG(di, dj) 
contains all frequent 2-subspaces in the projected space formed by (di, dj).

Procedure: find2FS
Input: all points in the dataset which is partitioned into p×p cells, a density threshold ρ.
Output: a list of point groups.
(1) for each dimension pair do
(2)     Sort the projected points and project them onto the cells;
(3)     for each cell do
(4)          if the number of data points in the cell ≥ ρ then
(5)              The cell is frequent;
(6)         endif;
(7)     endfor;
(8)     for each frequent cell do
(9)             Co mbine the points in this cell with those in other adjacent frequent cells 

to form a larger point group until no more adjacent frequent cells can be 
combined;

(10)     endfor;
(11)      endfor;

Figure 3: The find2FS procedure.

Lemma 1. The time complexity of the find2FS procedure is bounded by O(m2*n*log(n)), where 
m is the number of dimensions in the space and n is the number of points in the dataset.
Proof: For each dimension pair, we can project all the points onto the space formed by the 
dimension pair. Then, we sort the projected points by the first dimension and then by the second 
dimension. The time complexity of sorting these projected points is bounded by O(n*log(n)). 
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The time complexity of projecting the projected points onto the cells is bounded by O(n). Thus, 
the time complexity of step (2) is bounded by O(n*log(n)). The time complexity of steps (3)-
(7) is bounded by O(p2)=O(1), where p is a user-specified constant. Since the points on each 
cell is sorted, the time complexity of merging the points on two adjacent frequent cells together 
is bounded by O(n1+n2), where n1 and n2 are the number of points in the first and second cells, 
respectively. Thus, the time complexity of steps (8)-(10) is bounded by O(n). Since the number 
of dimensional pairs is bounded by O(m2), the time complexity of the find2FS procedure is 
bounded by O(m2*(n*log(n)+p2+n))=O(m2*n*log(n)).

Table 1: Projecting the points onto projected spaces.

ID Data point (d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2,  d4) (d3,  d4)
P1 (0, 0, 0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
P2 (2.4, 3, 3.5, 2) (2.4, 3) (2.4, 3.5) (2.4, 2) (3, 3.5) (3, 2) (3.5, 2)
P3 (1.5, 6, 11, 2) (1.5, 6) (1.5, 11) (1.5, 2) (6, 11) (6, 2) (11, 2)
P4 (2.3, 9, 9, 7) (2.3, 9) (2.3, 9) (2.3, 7) (9, 9) (9, 7) (9, 7)
P5 (3, 7, 2, 10) (3, 7) (3, 2) (3, 10) (7, 2) (7, 10) (2, 10)
P6 (4, 6, 6, 11) (4, 6) (4, 6) (4, 11) (6, 6) (6, 11) (6, 11)
P7 (3.5, 9.5, 10, 11) (3.5, 9.5) (3.5, 10) (3.5, 11) (9.5, 10) (9.5, 11) (10, 11)
P8 (3.5, 18, 16, 12) (3.5, 18) (3.5, 16) (3.5, 12) (18, 16) (18, 12) (16, 12)
P9 (6, 20, 9, 2) (6, 20) (6, 9) (6, 2) (20, 9) (20, 2) (9, 2)
P10 (10, 13, 5, 12) (10, 13) (10, 5) (10, 12) (13, 5) (13, 12) (5, 12)
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Figure 4. An example of getting point groups in cells. 
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3.2 Finding frequent k-subspaces

Let Dim(α) denote the dimensions spanned by a frequent subspace α. Two frequent 
k-subspaces α and β are joinable if Dim(α) and Dim(β) have k-1 dimensions in common, where 
k≥ 2. Next, let us consider how to use two joinable frequent k-subspaces α and β to generate a 
(k+1)-subspace γ, where Dim(γ) is Dim(α)∪Dim(β). To find the points contained by γ, we can 
intersect the point group of α with that of β. If the number of points in γ is not less than σ, γ is a 
frequent (k+1)-subspace.
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For example, Figure 6 shows how to use two joinable frequent k-subspaces α and β to 
generate a frequent (k+1)-subspace, where σ = 2. The point group of α contains P1, P2, and P3, 
while the point group of β contains P1, P3, and P4. We intersect both point groups and obtain the 
resultant point group which contains two points, P1 and P3. Since σ = 2, γ is a frequent (k+1)-
subspace.
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while the point group of β contains P1, P3, and P4. We intersect both point groups and obtain 
the resultant point group which contains two points, P1 and P3. Since σ = 2, γ is a frequent 
(k+1)-subspace. 
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Figure 5. An example of finding frequent 2-subspaces. 

We can join the joinable frequent subspaces to generate larger frequent subspaces in a 
depth-first search (DFS) manner: (1) For each frequent 2-subspace, we join it to the other 
joinable frequent 2-subspace to generate a 3-subspace and check if the 3-subspace is frequent. 
Thus, we find all frequent 3-subspaces, each of which is associated with a point group. (2) 
For each frequent k-subspace (k> 2), we join it to its joinable k-subspaces to generate frequent 
(k+1)-subspaces in a DFS manner. (3) Let k = k+1, we repeat steps 2-3 until no more frequent 
subspace can be generated. The procedure of finding frequent k-subspaces is shown in Figure 
7. 
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Procedure: findKFS 
Input: a joinable class containing frequent k-subspaces S, and a minimum support 

threshold σ. 
Output: all frequent subspaces FS. 
(1) for each k-subspace α in S do 
(2) Let Fk+1 be ∅; 
(3) for each k-subspace β in S, which is joinable to α, β>α do 
(4) Let Dim(α) be d1, d2, …,dk; 
(5) Let Dim(β) be d1, d2, …,d’k; 
(6) Let γ be the frequent (k+1)-subspace generated by joining α and β; That is, 

Dim(γ) contains d1, d2, …,dk, and d’k; 
(7) Intersect the point group of α with the point group of β; 
(8) If the number of points in the point group obtained in step (7) is not less than σ, 

γ is frequent. Collect it into Fk+1 and FS; 
(9) endfor; 
(10) Call findKFS(Fk+1, σ, FS); 
(11) endfor; 

Figure 7.The findKFS procedure. 
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Procedure: findKFS
Input: a joinable class containing frequent k-subspaces S, and a minimum support threshold σ.
Output: all frequent subspaces FS.
(1) for each k-subspace α in S do
(2)       Let Fk+1 be ∅;
(3)       for each k-subspace β in S, which is joinable to α, β>α do
(4)              Let Dim(α) be d1, d2, …,dk;
(5)              Let Dim(β) be d1, d2, …,d’k;
(6)                 Let �γ be the frequent (k+1)-subspace generated by joining α and β; That is, 

Dim(γ) contains d1, d2, …,dk, and d’k;
(7)              Intersect the point group of α with the point group of β;
(8)              If t h e number of points in the point group obtained in step (7) is not less than σ, 

γ is frequent. Collect it into Fk+1 and FS;
(9)       endfor;
(10)       Call findKFS(Fk+1, σ, FS);
(11) endfor;

Figure 7: The findKFS procedure.
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Figure 8. The frequent subspaces mined from the dataset shown in Table 1. 
Let’s consider the frequent subspaces shown in Figure 5. The frequent 2-subspaces G21 

and G22 are joinable to G11. By intersecting the point groups of G21 and G22 with the point 
group of G11, we obtain two point groups {P1, P2} and {P3, P4}, respectively. Since the 
minimum support threshold is 2, these point groups intersected are frequent. That is, we find 
two frequent 3-subspaces in dimensions (d1, d2, d3). Similarly, we can find all frequent 
3-subspaces and frequent 4-subspaces as shown in Figure 8, where the edge between two 
frequent subspaces means that the child subspace is derived from the parent subspace. 
Lemma 2. The time complexity of the findKFS procedure is bounded by O(N*v*n), where n 
is the number of points in the dataset, v is the average number of joinable subspaces for each 
frequent subspace, and N is the number of frequent subspaces found. 
Proof: The time complexity of steps (4)-(6) and (8) is bounded by O(1). Since the points in 
subspaces α and β are sorted, the time complexity of merging two point groups together in 
step (7) is bounded by O(n). Thus, the time complexity of joining two frequent k-subspaces is 
bounded by O(n). There are N frequent subspaces in total, each of which has v joinable 
subspaces on average. Therefore, the time complexity of the findKFS procedure is bounded 
by O(N*v*n). 
 
3.3  Subspace summarization 

After finding all frequent subspaces, we use a greedy pattern summarization approach to 
summarize the subspaces. By doing so, we can reduce the number of frequent subspaces and 
select the significant ones. 

We introduce ω as a weight and assign each frequent subspace a score by the greedy 
pattern summarization approach. The score is computed by the equation Score(S) = 
ω×Q(S)+(1-ω)×V(S), where Q(S) is the quality of the subspace S and V(S) is the coverage of 
the subspace S. The quality is defined as 1-H/log(c), where H is the entropy of S, and c is the 
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frequent 4-subspaces as shown in Figure 8, where the edge between two frequent subspaces 
means that the child subspace is derived from the parent subspace.
Lemma 2. The time complexity of the findKFS procedure is bounded by O(N*v*n), where n 
is the number of points in the dataset, v is the average number of joinable subspaces for each 
frequent subspace, and N is the number of frequent subspaces found.
Proof: The time complexity of steps (4)-(6) and (8) is bounded by O(1). Since the points in 
subspaces α and β are sorted, the time complexity of merging two point groups together in 
step (7) is bounded by O(n). Thus, the time complexity of joining two frequent k-subspaces 
is bounded by O(n). There are N frequent subspaces in total, each of which has v joinable 
subspaces on average. Therefore, the time complexity of the findKFS procedure is bounded by 
O(N*v*n).

3.3 Subspace summarization

After finding all frequent subspaces, we use a greedy pattern summarization approach to 
summarize the subspaces. By doing so, we can reduce the number of frequent subspaces and 
select the significant ones.

We introduce ω as a weight and assign each frequent subspace a score by the greedy 
pattern summarization approach. The score is computed by the equation Score(S) = ω×Q(S)+(1-
ω)×V(S), where Q(S) is the quality of the subspace S and V(S) is the coverage of the subspace 
S. The quality is defined as 1-H/log(c), where H is the entropy of S, and c is the number of 
different classes in the dataset. Dividing H by log(c) is used to normalize the entropy between 0 
and 1. The coverage is defined as the number of points in the selected subspaces divided by the 
total number of points in the dataset.

First, we select the frequent subspace with the highest score. Next, each subspace is 
updated by eliminating the points contained by the selected subspaces so that the remaining 
points in a subspace do not overlap with those in the selected subspaces. Then, the score of each 
subspace is modified by using the points in the original subspace to compute the quality and 
using the remaining points in the updated subspace to compute the coverage. After the score of 
each subspace is modified, we continue to select the subspace with the highest score. The above 
steps are repeated until the score of every frequent space is less than a user-specified threshold τ. 
The procedure of selecting the significant subspaces is shown in Figure 9.

Let us consider the points shown in Table 1 again, where the class of each point is shown 
in Table 2. The frequent subspaces found are shown in Figure 8. Let ω = 0.5. We first compute 
the score for each frequent subspace as shown in Table 3. Since the score of subspace G32 is the 
highest, G32 is added to SFS. Then, the scores of the other subspaces are updated as shown in 
Table 4, where the score of G31 is the highest. Thus, G31 is added to SFS. Then, the scores of 
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the other subspaces are updated as shown in Table 5. G11 is added to SFS and the scores of the 
remaining subspaces are updated. Let the score threshold τ be 0.1. Since the updated scores of 
the non-empty frequent subspaces are all less than τ, no more subspaces can be chosen. Finally, 
we obtain 3 subspaces as shown in Table 6. That is, we select 3 significant subspaces from 18 
frequent ones.

Procedure: subspace summarization
Input: all frequent subspaces FS, a weight ω, and a score threshold τ.
Output: the selected frequent subspaces SFS.
(1) for each frequent subspace S in FS do
(2)       Compute its score Score(S)=ω×Q(S)+(1-ω)×C(S);
(3) endfor;
(4) Select the subspace with the highest score to SFS;
(5) while the score of any frequent space in FS is not less than τ do
(6)               for each frequent subspace S’ in FS do
(7)              Th e subspace S’ is updated by eliminating the data points which are contained 

by the subspaces in SFS;
(8)             if the subspace does not contain any point then
(9)                 Score(S )́=0;
(10)             else
(11)                 Scor e(S’)=ω×Q(S’)+(1-ω)×C(S’), where Q is computed in the original 

subspace and C is computed in the updated subspace;
(12)             endif;
(13)      endfor;
(14)      Select the subspace with the highest score to SFS;
(15) endwhile;

Figure 9: The subspace summarization procedure.

Lemma 3. The time complexity of the subspace summarization procedure is bounded by 
O(M*(N+n)), where n is the number of points in the dataset, N is the number of frequent 
subspaces found, and M is the number of significant subspaces selected.
Proof: The time complexity of steps (1)-(3) is bounded by O(N). The time complexity of 
selecting the highest score in step (4) is bounded by O(N), too. The time complexity of updating 
S’ by eliminating the data points which are contained by the subspaces in SFS is bounded by 
O(n1+n2)=O(n), where n1 and n2 are the number of points in S’ and SFS, respectively. The time 
complexity of steps (8)-(12) is bounded by O(N). Since the while-loop from step (5) to step 
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(15) is executed M-1 times, the time complexity of the subspace summarization procedure is 
bounded by O(N+M*(N+n))= O(M*(N+n)).
T h e o re m  1 .  T h e  t i m e  c o m p l e x i t y  o f  t h e  p r o p o s e d  m e t h o d  i s  b o u n d e d  b y 
O(m2*n*log(n)+N*v*n), where m is the number of dimensions in the space, n is the number of 
points in the dataset, N is the number of frequent subspaces found, and v is the average number 
of joinable subspaces for each frequent subspace.
Proof: Since the proposed method consists of three phases: finding frequent 2-subspaces, 
finding frequent k-subspaces, and subspace summarization, its time complexity is bounded by 
O(m2*n*log(n)+N*v*n+M*(N+n)), where M is the number of significant subspaces selected. 
However, M<<N and M<<n. Therefore, the time complexity of the proposed method is 
bounded by O(m2*n*log(n)+N*v*n).

Table 2:  The classes of the points.

Data point P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Class 1 1 1 1 2 2 2 2 2 1

Table 3:  The score of each frequent subspace in FS.

FS Quality Coverage Score
G11{P1, P2, P3, P4, P5, P6, P7} 0.015 0.7 0.357
G21{P1, P2} 1 0.2 0.6
G22{P3, P4} 1 0.2 0.6
G31{P1, P2, P3} 1 0.3 0.65
G32{P5, P6, P7, P8} (add to SFS) 1 0.4 0.7
G41{P1, P2} 1 0.2 0.6
G42{P3, P4, P7} 0.082 0.3 0.191
G51{P1, P2, P3} 1 0.3 0.65
G52{P5, P6, P7} 1 0.3 0.65
G61{P1, P2} 1 0.2 0.6
G62{P3, P9} 0 0.2 0.1
G 1́1{P1, P2} 1 0.2 0.6
G 1́2{P3, P4} 1 0.2 0.6
G 2́1{P1, P2, P3} 1 0.3 0.65
G 2́2{P5, P6, P7} 1 0.3 0.65
G 3́1{P1, P2} 1 0.2 0.6
G 4́1{P1, P2} 1 0.2 0.6
G´́11{P1, P2} 1 0.2 0.6
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Table 4:  Updated scores of the frequent subspaces in FS.

Updated FS´ Updated quality Updated coverage Updated score
G11{P1, P2, P3, P4} 0.015 0.4 0.207
G21{P1, P2} 1 0.2 0.6
G22{P3, P2} 1 0.2 0.6
G31{P1, P2, P3} (add to SFS) 1 0.3 0.65
G32{P5, P6, P7, P8} (in SFS) 0 0 0
G41{P1, P2} 1 0.2 0.6
G42{P3, P4} 0.082 0.2 0.141
G51{P1, P2, P3} 1 0.3 0.65
G52∅ 0 0 0
G61{P1, P2} 1 0.2 0.6
G62{P3, P9} 0 0.2 0.1
G 1́1{P1, P2} 1 0.2 0.6
G 1́2{P3, P4} 1 0.2 0.6
G 2́1{P1, P2, P3} 1 0.3 0.65
G 2́2 ∅ 0 0 0
G 3́1{P1, P2} 1 0.2 0.6
G 4́1{P1, P2} 1 0.2 0.6
G´́11{P1, P2} 1 0.2 0.6

Table 5:  Updated scores of the subspaces with a non-empty point group.

Updated FS´ Updated quality Updated coverage Updated score
G11{P4} (add to SFS) 1 0.1 0.55
G22{P4} 1 0.1 0.55
G31{P1, P2, P3} (in SFS) 0 0 0
G32{P5, P6, P7, P8} (in SFS) 0 0 0
G42{P4} 1 0.1 0.55
G62{P9} 0 0.1 0.05
G’12{P4} 1 0.1 0.55

Table 6:  Selected frequent subspaces.

Selecting order SFS Quality Coverage
1 G32{P5, P6, P7, P8} 100% 40%
2 G31{P1, P2, P3} 100% 70%
3 G11{P4} 100% 80%
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4. PERFORMANCE EVALUATION

In this section, we compared the proposed method with FIRES (Kriegel et al. 2005) 
and DUSC (Assent et al. 2007) by both synthetic and real datasets. All the algorithms were 
implemented using Microsoft Visual C++ 2005. All of experiments were performed on an IBM 
Compatible PC with Intel Core 2 Quad CPU Q6600 @ 2.40GHz, 2.0GB main memory, running 
on Windows XP Professional.

To evaluate the performance of the proposed method, we first analyzed the time 
complexity of the comparing methods. Based on DBSCAN, FIRES (Kriegel et al. 2005) is 
a generic framework for finding the subspaces of high-dimensional data. It first generates 
all 1-dimensional clusters using DBSCAN. The time complexity of this step is bounded by 
O(m*n*log(n)), where m is the number of dimensions in the space and n is the number of 
points in the dataset. Then, it generates subspace clusters by grouping the best-merge-clusters 
together, where the time complexity of this step is bounded by O(NF2), and NF is the number 
of base clusters. Finally, it refines the subspace clusters generated by pruning the candidates 
and using DBSCAN to cluster subspaces again, where the time complexity is bounded by 
O(NF2+NF*n*log(n)). Therefore, the time complexity of FIRES is bounded by O(m*n*log(n) 
+NF2+NF2+NF*n*log(n))=O((m+NF)*n*log(n)+NF2).

DUSC (Assent et al. 2007) adopts different density thresholds for different subspaces and 
finds the S-connected clusters, where two data points in a cluster are connected to each other if 
the distance between them is within a user-specified threshold. The time complexity of finding 
the S-connected clusters is bounded by O(ND*m2*n2), where ND is the number of frequent 
subspaces found. A cluster forms a subspace if its density is greater than a user-specified 
threshold and the number of data points in the cluster is larger than the minimum cluster size. 
After generating the subspace clusters, it prunes the redundant ones, where the time complexity 
of this step is bounded by O(ND2). Therefore, the time complexity of DUSC is bounded by 
O(ND*m2*n2+ND2). The time complexities of the proposed method, FIRES, and DUSC are 
summarized in Table 7.

Table 7:  The time complexities.

Method Time complexity
Our method O(m2*n*log(n)+N*v*n)
FIRES O((m+NF)*n*log(n)+NF2)
DUSC O(ND*m2*n2+ND2)
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4.1 Synthetic dataset

We use a synthetic dataset to test the scalability and efficiency of the proposed method. The 
synthetic data is generated by the methods similar to those used in (Agrawal et al. 1998; Cheng 
et al. 1999; Kriegel et al. 2005). The default settings of the parameters used in the data generator 
are shown in Table 8.

Table 8:  The default settings.

Parameters Default value
Number of points 50000
Number of dimensions 10
Number of cells 40×40
Density threshold 0.01
Minimum support 0.1

Figure 10 illustrates the execution time versus the number of dimensions, where the number 
of points is 50000, the number of cells is 40×40, the density threshold is 0.01, and the minimum 
support threshold is 0.1. When the number of dimensions increases, the execution times of both 
methods increase. However, the proposed method runs faster than FIRES and DUSC. This is 
because FIRES uses DBSCAN to cluster the neighboring points and DBSCAN spends much 
time in finding an appropriate radius of a cluster. On the other hand, it is quite time-consuming 
for DUSC to find the S-connected clusters. However, the proposed method uses the grid-based 
clustering method to find the frequent 2-subspaces and then uses the joinable classes and point 
groups to find the frequent k-subspaces in a DFS manner, k> 2. By using the joinable subspaces, 
the proposed method can localize the search space in a small number of point groups. Thus, the 
proposed method is more efficient than FIRES and DUSC.

 

Figure 10. Execution time versus number of dimensions. 

 

Figure 11. Execution time versus number of data points. 

Figure 11 shows the execution time versus the number of points, where the number of 
dimensions is 10, the number of cells is 40×40, the density threshold is 0.01, and the 
minimum support threshold is 0.1. When the number of points increases, the execution times 
of these three methods increase linearly. However, the proposed method runs faster than 
FIRES and DUSC. 
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Figure 11 shows the execution time versus the number of points, where the number of 
dimensions is 10, the number of cells is 40×40, the density threshold is 0.01, and the minimum 
support threshold is 0.1. When the number of points increases, the execution times of these three 
methods increase linearly. However, the proposed method runs faster than FIRES and DUSC.

 

Figure 12. Execution time and number of subspaces versus number of cells. 

 

Figure 13. Execution time and number of subspaces versus minimum support. 

Figure 12 shows the execution time and the number of subspaces versus the number of 
cells, where the number of cells is increased from 5×5 to 40×40. When number of cells 
increases, the execution time decreases. However, the number of frequent subspaces 
increases when the number of cells equals to 5×5, 10×10, and 15×15. This is because there 
are less candidate subspaces to be generated for the small number of cells. The number of 
frequent subspaces decreases when the number of cells is not less than 15×15. As the size of 
each cell decreases, many subspaces become infrequent under the given density and 
minimum support thresholds. The number of cells can be adjusted to generate the subspaces 
in different granularity. 

Figure 13 illustrates the execution time and number of subspaces versus the minimum 
support threshold. Figure 14 shows the execution time and number of subspaces versus the 
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Figure 12 shows the execution time and the number of subspaces versus the number 
of cells, where the number of cells is increased from 5×5 to 40×40. When number of cells 
increases, the execution time decreases. However, the number of frequent subspaces increases 
when the number of cells equals to 5×5, 10×10, and 15×15. This is because there are less 
candidate subspaces to be generated for the small number of cells. The number of frequent 
subspaces decreases when the number of cells is not less than 15×15. As the size of each 
cell decreases, many subspaces become infrequent under the given density and minimum 
support thresholds. The number of cells can be adjusted to generate the subspaces in different 
granularity.

Figure 13 illustrates the execution time and number of subspaces versus the minimum 
support threshold. Figure 14 shows the execution time and number of subspaces versus the 
density threshold. Both figures have similar tendency. That is, when the density or minimum 
support threshold increases, the number of subspaces and the execution time decrease. This is 
because both thresholds are used to decide whether a subspace is frequent or not. The larger the 
threshold is, the fewer frequent subspaces are.

density threshold. Both figures have similar tendency. That is, when the density or minimum 
support threshold increases, the number of subspaces and the execution time decrease. This is 
because both thresholds are used to decide whether a subspace is frequent or not. The larger 
the threshold is, the fewer frequent subspaces are. 

 

Figure 14. Execution time and number of subspaces versus density threshold. 

In summary, the proposed method uses the grid-based clustering method to find the 
frequent 2-subspaces and then utilizes the joinable subspaces to find the frequent k-subspaces 
in a DFS manner, k> 2. By using the joinable subspaces, the proposed method can localize 
the search space in a small number of points groups. Thus, the proposed method is more 
efficient than FIRES and DUSC. 
 
4.2 Real datasets 

We compared the proposed method with FIRES (Kriegel et al. 2005) and DUSC (Assent 
et al. 2007) by six real datasets (Newman et al. 1998), namely, pendigits, glass, vowel, wine, 
handwritten digit, and letter recognition. Since DUSC uses the quality and coverage to 
evaluate the quality of subspaces selected, we adopt the same measures to evaluate the 
proposed algorithm and the comparing algorithms. 

The pendigits dataset has 16 dimensions and 7494 data instances, where all the instances 
in the dataset are classified into 10 classes. The glass dataset has 9 dimensions and 214 data 
instances, where all the instances in the dataset are classified into 6 classes. The vowel dataset 
has 10 dimensions and 990 data instances, where all the instances in the dataset are classified 
into 11 classes. The wine dataset has 13 dimensions and 178 data instances, where all the 
instances in the dataset are classified into 3 classes. The handwritten digit dataset has 256 
dimensions and 1593 data instances, where all the instances in the dataset are classified into 
10 classes. The letter recognition dataset has 16 dimensions and 20000 data instances, where 
all the instances in the dataset are classified into 26 classes. 
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in a DFS manner, k> 2. By using the joinable subspaces, the proposed method can localize the 
search space in a small number of points groups. Thus, the proposed method is more efficient 
than FIRES and DUSC.
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We compared the proposed method with FIRES (Kriegel et al. 2005) and DUSC (Assent 
et al. 2007) by six real datasets (Newman et al. 1998), namely, pendigits, glass, vowel, wine, 
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handwritten digit, and letter recognition. Since DUSC uses the quality and coverage to evaluate 
the quality of subspaces selected, we adopt the same measures to evaluate the proposed 
algorithm and the comparing algorithms.

The pendigits dataset has 16 dimensions and 7494 data instances, where all the instances 
in the dataset are classified into 10 classes. The glass dataset has 9 dimensions and 214 data 
instances, where all the instances in the dataset are classified into 6 classes. The vowel dataset 
has 10 dimensions and 990 data instances, where all the instances in the dataset are classified 
into 11 classes. The wine dataset has 13 dimensions and 178 data instances, where all the 
instances in the dataset are classified into 3 classes. The handwritten digit dataset has 256 
dimensions and 1593 data instances, where all the instances in the dataset are classified into 10 
classes. The letter recognition dataset has 16 dimensions and 20000 data instances, where all the 
instances in the dataset are classified into 26 classes. 

Table 9:  The results of the six datasets.

Our method DUSC FIRES
Quality Coverage Quality Coverage Quality Coverage

Pendigits 99% 75% 86% 74% 55% 100%
Glass 99% 95% 60% 87% 23% 98%
Vowel 92% 94% 82% 70% 0.003% 98%
Wine 100% 99% 68% 97% 2.9% 100%
Handwritten digit 96% 100% 33% 86% 5.7% 100%
Letter recognition 88% 83% 32% 81% 7.6% 100%

Table 10:  Number of subspaces selected.

Number of subspaces
Our method DUSC FIRES

Pendigits 132 14 378
Glass 7 7 2
Vowel 69 140 1
Wine 10 47 18
Handwritten digit 61 74 7
Letter recognition 98 96 46

Table 9 shows the results of the six datasets obtained by the proposed method, FIRES and 
DUSC. Table 10 illustrates the number of subspaces selected by these three methods. FIRES 
has less quality because it uses DBSCAN to cluster the neighboring data instances together. The 
subspaces obtained may contain many points of different classes. Thus, FIRES has bad quality 
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but good coverage. Generally speaking, the higher coverage will lead to the lower quality. This 
is because we need to include more data points in the selected subspaces in order to increase the 
coverage. Consequently, the possibility of a subspace containing the data points with different 
classes will increase. Thus, as the coverage is getting higher, the quality will become lower. For 
example, for the vowel and glass datasets, FIRES combines many data points with different 
classes into a subspace. The coverage of both datasets is high and the quality is comparatively 
low for FIRES. DUSC combines fewer data points with different classes into a subspace. 
Its coverage is less than that of FIRES; however, its quality is better than that of FIRES. On 
the other hand, the proposed method uses the greedy summarization approach to select the 
significant subspaces by balancing both quality and coverage simultaneously. Therefore, the 
proposed method has better quality and coverage than DUSC, and better quality than FIRES.

  
Table 11:  Confusion matrix for the wine dataset.

Class SFS1 SFS2 SFS3 SFS4 SFS5 SFS6 SFS7 SFS8 SFS9 SFS10

1 42 0 0 0 8 0 10 0 0 0
2 0 0 36 19 0 7 0 0 5 0
3 0 38 0 0 0 0 0 6 0 4

Table 11 shows the subspaces selected by the proposed method for the wine dataset, where 
the classes are the wines derived from three different cultivars. The first subspace SFS1 contains 
42 instances of class 1. The second subspace SFS2 contains 38 instances of class 3, and so on.

Table 12:  The wines in the first three subspaces.

Dimension All wines SFS1 SFS2 SFS3

alcohol 11.03～14.83 13.39～14.83 - -
magnesium 70～162 - - 84～94
total phenols 0.98～3.88 2.35～3.88 - -
flavonoids 0.34～5.08 - 0.47～1.28 -
nonflavonoid phenols 0.13～0.66 0.17～0.5 - 0.19～0.66
color intensity 1.28～13 3.52～8.9 3.85～11.75 1.28～4.8
hue 0.48～1.71 - 0.54～0.96 -
OD280/OD315 of diluted wines 1.27～4 - - 1.82～3.57
proline 278～1680 - - 278～714

Table 12 illustrates the attributes of the wines in the first three subspaces, where the values 
in the cells represent the characteristics of the wines in the subspaces and “-＂ represents the 
attribute not included in the subspace. For example, SFS1 contains the wines with high alcohol, 
high total phenols, middle nonflavonoid phenols, and middle color intensity. SFS2 consists of the 
wines with low flavonoids, middle color intensity, and low hue. SFS3 is comprised of the wines 
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with low magnesium, middle nonflavonoid phenols, low color intensity, middle OD280/OD315 
of diluted wines, and low proline.

In summary, since the proposed method first finds all frequent subspaces and then uses the 
subspace summarization approach to select the significant subspaces, it can balance both quality 
and coverage simultaneously by considering all frequent subspaces. Therefore, the proposed 
method has better quality and coverage than DUSC, and better quality than FIRES.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel subspace mining method. The proposed method 
consists of three phases. First, we generate all frequent 2-subspaces. Second, for each frequent 
k-subspace (k≥ 2), we join it to each joinable k-subspace and generate its frequent super (k+1)-
subspace. Let k = k+1, the steps in phase two are performed recursively in a depth-first search 
manner until no more frequent subspaces can be found. Finally, we adopt a greedy algorithm to 
summarize all frequent subspaces found and select the significant ones.

Since the proposed method uses the joinable subspaces to find the frequent subspaces in 
a DFS manner, the proposed method can localize the search space in a small number of point 
groups. Thus, the proposed method is more efficient than FIRES and DUSC. Moreover, since 
the proposed method first finds all frequent subspaces and then uses the subspace summarization 
approach to select the significant ones. It can balance both quality and coverage simultaneously 
by considering all frequent subspaces. The experimental results show that the proposed method 
is efficient and scalable, has better quality and coverage than DUSC, and has better quality than 
FIRES in the real datasets.

In addition to the applications of the real datasets shown in Section 4.2, the proposed 
method can be also applied to the following potential areas such as customer segmentation, 
customer profiling, stock portfolio selection, trend analysis, spam mail filtering, text-mining, 
and bioinformatics. However, the proposed method still has some limitations. First, we use a 
simple score function to compute the score for each frequent subspace. Thus, it is worth further 
study on how to provide a better score function for a complex system. Finally, it is worth 
developing an algorithm which embeds the constraint of score computation in the process of 
mining frequent subspaces.
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