
資訊管理學報　第十七卷　專刊 27

Mining Significant Subspaces

Anthony J.T. Lee

Department of Information Management, National Taiwan University

Ming-Chih Lin

Department of Information Management, National Taiwan University

Yun-Ru Wang

Department of Information Management, National Taiwan University

Kuo-Tay Chen

Department of Accounting, National Taiwan University

Abstract
As both the number of dimensions increases, existing clustering methods in full feature

space are not appropriate to cluster data in databases. Thus, the subspace clustering has attracted

more and more attention recently. In this paper, we propose a novel method to mine significant

subspaces from all frequent subspaces, where a subspace is frequent if it contains enough

data points. The proposed method consists of three phases. First, we generate all frequent

2-dimensional subspaces. Second, we recursively combine frequent k-dimensional subspaces to

generate frequent (k+1)-dimensional subspaces, k≥ 2. Finally, we adopt a greedy algorithm to

summarize the frequent subspaces generated and select the significant ones. The experimental

results show that the proposed method has better quality and coverage than DUSC, and better

quality than FIRES.

Key words : subspace mining, subspace clustering, frequent subspace, data mining, greedy

algorithm

資訊管理學報　第十七卷　專刊28

重要子空間之資料探勘

李瑞庭

國立臺灣大學資訊管理學系

林明志

國立臺灣大學資訊管理學系

王韻茹

國立臺灣大學資訊管理學系

陳國泰

國立臺灣大學會計學系

摘要

隨著資料維度的增加，現有利用全部資料維度的分群方法，已經不適用於分析高維

度的資料。因此，近年來子空間分群的方法愈來愈受重視。在本篇論文中，我們提出一

個新的方法以探勘重要的子空間。我們所提出的方法包括三個步驟，首先，我們將所有

的資料點投影到二維空間，並產生許多頻繁子空間；然後，我們利用遞迴的方式結合這

些頻繁子空間，以形成更大的頻繁子空間；最後，我們採用貪婪演算法做總結，從所產

生的頻繁子空間中選出重要的子空間。實驗結果顯示，我們所提出的方法在品質方面優

於FIRES，在涵蓋率與品質方面，皆優於DUSC。

關鍵字：��子空間探勘、子空間分群、頻繁子空間、資料探勘、貪婪演算法

Mining Significant Subspaces 29

1. INTRODUCTION

Clustering is an important technique to find the relationships in many applications such
as customer behavior analysis, document classification, and Web log analysis (Parsons et al.
2004; Patrikainen et al. 2006). As both the number of dimensions increases, existing methods of
clustering data in full feature space are not appropriate for these applications (Lu et al. 2007).
Thus, the subspace clustering has attracted more and more attention recently.

The subspace clustering methods can be classified into two classes: bottom-up and top-
down, depending on the search direction (Lu et al. 2007). The bottom-up methods include
CLIQUE (Agrawal et al. 1998), ENCLUS (Cheng et al. 1999), MAFIA (Goil et al. 1999),
SCHISM (Sequeira & Zaki 2004), IBUSCA (Glomba & Markowska-Kaczmar 2006), FIRES
(Kriegel et al. 2005), and DUSC (Assent et al. 2007). CLIQUE (Agrawal et al. 1998) is a
density-based method which partitions each dimension into several intervals of equal length,
and then uses an Apriori-like approach to find interested subspaces. Based on CLIQUE,
ENCLUS (Cheng et al. 1999) uses entropy to cope with the criterions of coverage, density and
correlation, where the coverage increases as the entropy decreases. MAFIA (Goil et al. 1999)
exploits histograms to decide how many grids to be created and uses an adaptive grid-based
algorithm to partition the dimensions. SCHISM (Sequeira & Zaki 2004) adopts the support and
Chernoff-Hoeffding bounds as the density thresholds and searches for maximal subspaces in
a depth-first search manner. IBUSCA (Glomba & Markowska-Kaczmar 2006) is a grid-based
algorithm which needs a parameter to determine the density threshold, where the data space is
split based on histograms to form dense subspaces. Based on DBSCAN, FIRES (Kriegel et al.
2005) is a generic framework for finding the subspaces of high-dimensional data. DUSC (Assent
et al. 2007) adopts different density thresholds for different subspaces and finds the S-connected
clusters, where two data points in a cluster are connected to each other if the distance between
them is within a user-specified threshold.

Generally speaking, bottom-up methods take advantage of the downward closure property
of density to reduce the search space. The downward closure property of density means that if
a (k+1)-dimensional subspace R is dense, all k-dimensional subspaces of R should be dense, k≥
2. Bottom-up methods first create bins for each dimension and select those bins with densities
above a given threshold. Adjacent dense subspaces (or bins) are then combined to form clusters.
The methods proceed until no more dense subspaces can be found. However, one cluster may
be mistakenly reported as two smaller clusters. The nature of the bottom-up methods leads to
overlapping clusters, where one instance can be in zero or more clusters.

Top-down methods include PROCLUS (Aggarwal et al. 1999), ORCLUS (Aggarwal & Yu

資訊管理學報　第十七卷　專刊30

2000), FINDIT (Woo & Lee 2002), and δ-Clusters (Yang et al. 2002). PROCLUS (Aggarwal
et al. 1999) partitions the data points to axis-aligned subspaces and refines them by a hill-
climbing approach. ORCLUS (Aggarwal & Yu 2000) is similar to PROCLUS but uses random
sampling to improve the processing time. It uses the method of singular value decomposition
to find arbitrarily-oriented clusters. FINDIT (Woo & Lee 2002) introduces the dimension-
oriented distance as a distance measure, where the subspaces with higher number of dimensions
are more meaningful. δ-Clusters (Yang et al. 2002) uses the Pearson correlation to measure
coherence among all data points. It separates data points into several clusters, and randomly
swaps the points in different clusters to improve the quality of clusters. The top-down methods
start by finding an initial approximation of the clusters in full feature space with equally
weighted dimensions. Next, each dimension is assigned a weight for each cluster. The updated
weights are then used in the next iteration to regenerate the clusters. This approach requires
multiple iterations of expensive clustering algorithms in the full set of dimensions. Many of the
implementations of this strategy use a sampling technique to improve performance. Top-down
algorithms divide the dataset into several partitions so that each data point is assigned to only
one cluster. Parameter tuning is necessary in order to get meaningful results. Often the critical
parameters for top-down algorithms are the number of clusters and the size of subspace, which
are often difficult to determine ahead of time. Moreover, top-down algorithms tend to find
clusters of the same or similar size.

The subspace clustering methods mentioned above cluster data points into groups by
merging or splitting dimensions. The top-down methods do not allow overlapping clusters,
where every data point belongs to just one cluster. But in real world, it is not appropriate
to assign a data point to only one cluster (Kriegel et al. 2005). In addition, most bottom-
up subspace mining methods find interested subspaces by pruning the potential subspaces
according to monotonicity. That is, they only take a local view of subspaces to resolve this
problem since they do not globally generate all potential subspaces to find the interested ones.

Therefore, in this paper, we propose a novel method to mine significant subspaces.
The proposed method consists of three phases. First, we generate all frequent 2-dimensional
subspaces. Second, we recursively combine frequent k-dimensional subspaces to generate
frequent (k+1)-dimensional subspaces, k≥ 2. Finally, we adopt a greedy approach (Michael
1996) to summarize all frequent subspaces found and select the significant ones.

The contributions of this paper are summarized as follows: (1) We propose a novel method
to mine significant subspaces. (2) We adopt a greedy approach to summarize all frequent
subspaces and select the significant ones. (3) The experimental results show that the proposed
method has better quality and coverage than DUSC, and better quality than FIRES.

The rest of this paper is organized as follows. Section 2 describes preliminary concepts and
problem definitions. Section 3 discusses the algorithm in detail and demonstrates how it works.

Mining Significant Subspaces 31

Section 4 shows the performance evaluation. Finally, the conclusions and future work are made
in Section 5.

2. PRELIMINARIES AND PROBLEM

DEFINITIONS

Consider an input dataset D containing n data points (points for short) P1, P2, …,Pn in an
m-dimensional data space. Each point is represented by (x1, x2, …,xm), where xi∈R and 1 ≤ i
≤ m. We first project every point onto a pair of dimensions (or dimension pair). Since there are
m dimensions in the data space, we have m*(m-1)/2 dimension pairs. A point, (x1, x2, …, xm),
projected to the projected space formed by a dimension pair (di, dj) is denoted as (xi, xj), 1≤ i<
j≤m.

To cluster the projected points into several groups in a two-dimensional projected space,
we partition each dimension into several bins (or intervals). That is, the projected space is
divided into several cells, where each cell may contain a group of points (point group). A cell
denoted by (i, j) is located at the ith interval of the first dimension and the jth interval of the
second dimension. If the number of points in a cell is not less than a user-specified density
threshold ρ, the cell is frequent. A cell (i, j) is adjacent to another cell (i ,́ j)́ if |i-i’|≤ 1 and |j-
j’|≤ 1. The points in a frequent cell can be combined with those in the other adjacent frequent
cells to form a larger point group. Then, we obtain a list of point groups, each of which forms a
subspace. For example, Figure 1 shows that the points are combined into two point groups (or
subspaces), where the projected space is divided into 4×4 = 16 cells. Similarly, we can obtain a
list of subspaces for each dimension pair.

If a subspace is formed by l dimensions, it is called an l-subspace. To find the number
of points in an l-subspace, we can intersect the point groups of the corresponding l*(l-1)/2
projected dimension pairs. Consequently, every subspace is associated with a point group. A
subspace is frequent if the number of points in the subspace is not less than a user-specified
minimum support threshold σ.

works. Section 4 shows the performance evaluation. Finally, the conclusions and future work
are made in Section 5.

2. PRELIMINARIES AND PROBLEM DEFINITIONS
Consider an input dataset D containing n data points (points for short) P1, P2, …,Pn in an

m-dimensional data space. Each point is represented by (x1, x2, …,xm), where xi∈ R and 1 < i

< m. We first project every point onto a pair of dimensions (or dimension pair). Since there
are m dimensions in the data space, we have m*(m-1)/2 dimension pairs. A point, (x1,
x2, …,xm), projected to the projected space formed by a dimension pair (di, dj) is denoted as
(xi, xj), 1< i< j< m.

To cluster the projected points into several groups in a two-dimensional projected space,
we partition each dimension into several bins (or intervals). That is, the projected space is
divided into several cells, where each cell may contain a group of points (point group). A cell
denoted by (i, j) is located at the ith interval of the first dimension and the jth interval of the
second dimension. If the number of points in a cell is not less than a user-specified density
threshold ρ, the cell is frequent. A cell (i, j) is adjacent to another cell (i’, j’) if |i-i’|< 1 and
|j-j’|< 1. The points in a frequent cell can be combined with those in the other adjacent
frequent cells to form a larger point group. Then, we obtain a list of point groups, each of
which forms a subspace. For example, Figure 1 shows that the points are combined into two
point groups (or subspaces), where the projected space is divided into 4×4 = 16 cells.
Similarly, we can obtain a list of subspaces for each dimension pair.

If a subspace is formed by l dimensions, it is called an l-subspace. To find the number of
points in an l-subspace, we can intersect the point groups of the corresponding l*(l-1)/2
projected dimension pairs. Consequently, every subspace is associated with a point group. A
subspace is frequent if the number of points in the subspace is not less than a user-specified
minimum support threshold σ.

D
im

ension
2

Dimension 1

5

Figure 1: Partitioning the points into two groups.

資訊管理學報　第十七卷　專刊32

For example, assume that σ = 2. Given five points in a 3-dimensional data space, we
project them into dimensions (d1, d2) and (d1, d3). The points are divided into two frequent
subspaces G11 = {P2, P5} and G12 = {P1, P3, P4} for the projected space formed by (d1, d2), G21
= {P1, P4} and G22 = {P2, P3, P5} for the projected space formed by (d1, d3) as shown in Figure 2.
Since G31 = G11∩G22 = {P2, P5} and G32 = G12∩G21 = {P1, P4}, G31 and G32 both contain two
points. Thus, they are frequent 3-subspaces.

Figure 1.Partitioning the points into two groups.

For example, assume that σ = 2. Given five points in a 3-dimensional data space, we
project them into dimensions (d1, d2) and (d1, d3). The points are divided into two frequent
subspaces G11 = {P2, P5} and G12 = {P1, P3, P4} for the projected space formed by (d1, d2),
G21 = {P1, P4} and G22 = {P2, P3, P5} for the projected space formed by (d1, d3) as shown in
Figure 2. Since G31 = G11∩G22 = {P2, P5} and G32 = G12∩G21 = {P1, P4}, G31 and G32 both
contain two points. Thus, they are frequent 3-subspaces.

Projected spaces (d1, d2) (d1, d3) (d1, d2, d3)

Point groups G11 G21 G31 P2

P5
 P1

P4
P2
P5

 G12 G22 G32 P1

P4
 P2

P3
P5

 P1
P3
P4

Figure 2. Generating a 3-subspace.

The objective of the proposed method is to find all frequent subspaces in a dataset with
respect to the user-specified density and minimum support thresholds, and then select the
significant ones from the frequent subspaces found.

3. THE PROPOSED METHOD
The proposed method consists of three phases: finding frequent 2-subspaces, finding

frequent k-subspaces, and subspace summarization. These phases will be described in detail
in the following subsections.

3.1 Finding frequent 2-subspaces

To find all frequent 2-subspaces, for each dimension pair, we project all points in the
dataset D onto the corresponding 2-dimensional space which is partitioned into p×p cells.
Next, we check if the number of points in each cell is not less than a density threshold ρ. If
this is the case, the cell is frequent. For each frequent cell, the points in the cell are combined
with those in the other adjacent frequent cells to form a larger point group. This step is
repeated until no more adjacent frequent cells can be combined. Finally, we obtain all
frequent 2-subspaces in the 2-dimensional space. The procedure of finding frequent
2-subspaces is shown in Figure 3.

6

Figure 2: Generating a 3-subspace.

The objective of the proposed method is to find all frequent subspaces in a dataset with
respect to the user-specified density and minimum support thresholds, and then select the
significant ones from the frequent subspaces found.

3. THE PROPOSED METHOD

The proposed method consists of three phases: finding frequent 2-subspaces, finding
frequent k-subspaces, and subspace summarization. These phases will be described in detail in
the following subsections.

3.1 Finding frequent 2-subspaces

To find all frequent 2-subspaces, for each dimension pair, we project all points in the
dataset D onto the corresponding 2-dimensional space which is partitioned into p×p cells. Next,
we check if the number of points in each cell is not less than a density threshold ρ. If this is the
case, the cell is frequent. For each frequent cell, the points in the cell are combined with those
in the other adjacent frequent cells to form a larger point group. This step is repeated until no
more adjacent frequent cells can be combined. Finally, we obtain all frequent 2-subspaces in the
2-dimensional space. The procedure of finding frequent 2-subspaces is shown in Figure 3.

Mining Significant Subspaces 33

For example, let us consider a dataset containing ten points in a 4-dimensional space,
where the projected points in each projected space are shown in Table 1. Assume that ρ = 2 and
σ = 2. To find frequent subspaces in the projected space formed by (d1, d2), the projected space
is partitioned into 4×4 cells. The smallest and largest values of the first dimension of the points
in Table 1 are 0 (P1) and 10 (P10), respectively. Thus, the first dimension is equally partitioned
into four intervals: [0, 2.5), [2.5, 5), [5, 7.5), and [7.5, 10]. Similarly, the second dimension is
equally partitioned into four intervals: [0, 5), [5, 10), [10, 15), and [15, 20]. In Figure 4, cell C1
contains {P1, P2}, C2 contains {P3, P4}, C3 contains {P5, P6, P7}, C4 contains {P8}, C5 contains
{P9}, and C6 contains {P10}. Since cells C1, C2 and C3 are frequent and adjacent to each other,
we can combine the points in these cells together and form a point group {P1, P2, P3, P4, P5, P6,
P7}. There are seven points in the point group. Thus, the point group (or subspace) is frequent.
Similarly, we can obtain all frequent 2-subspaces as shown in Figure 5, where FG(di, dj)
contains all frequent 2-subspaces in the projected space formed by (di, dj).

Procedure: find2FS
Input: all points in the dataset which is partitioned into p×p cells, a density threshold ρ.
Output: a list of point groups.
(1) for each dimension pair do
(2) Sort the projected points and project them onto the cells;
(3) for each cell do
(4) if the number of data points in the cell ≥ ρ then
(5) The cell is frequent;
(6) endif;
(7) endfor;
(8) for each frequent cell do
(9) Co mbine the points in this cell with those in other adjacent frequent cells

to form a larger point group until no more adjacent frequent cells can be
combined;

(10) endfor;
(11) endfor;

Figure 3: The find2FS procedure.

Lemma 1. The time complexity of the find2FS procedure is bounded by O(m2*n*log(n)), where
m is the number of dimensions in the space and n is the number of points in the dataset.
Proof: For each dimension pair, we can project all the points onto the space formed by the
dimension pair. Then, we sort the projected points by the first dimension and then by the second
dimension. The time complexity of sorting these projected points is bounded by O(n*log(n)).

資訊管理學報　第十七卷　專刊34

The time complexity of projecting the projected points onto the cells is bounded by O(n). Thus,
the time complexity of step (2) is bounded by O(n*log(n)). The time complexity of steps (3)-
(7) is bounded by O(p2)=O(1), where p is a user-specified constant. Since the points on each
cell is sorted, the time complexity of merging the points on two adjacent frequent cells together
is bounded by O(n1+n2), where n1 and n2 are the number of points in the first and second cells,
respectively. Thus, the time complexity of steps (8)-(10) is bounded by O(n). Since the number
of dimensional pairs is bounded by O(m2), the time complexity of the find2FS procedure is
bounded by O(m2*(n*log(n)+p2+n))=O(m2*n*log(n)).

Table 1: Projecting the points onto projected spaces.

ID Data point (d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2, d4) (d3, d4)
P1 (0, 0, 0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
P2 (2.4, 3, 3.5, 2) (2.4, 3) (2.4, 3.5) (2.4, 2) (3, 3.5) (3, 2) (3.5, 2)
P3 (1.5, 6, 11, 2) (1.5, 6) (1.5, 11) (1.5, 2) (6, 11) (6, 2) (11, 2)
P4 (2.3, 9, 9, 7) (2.3, 9) (2.3, 9) (2.3, 7) (9, 9) (9, 7) (9, 7)
P5 (3, 7, 2, 10) (3, 7) (3, 2) (3, 10) (7, 2) (7, 10) (2, 10)
P6 (4, 6, 6, 11) (4, 6) (4, 6) (4, 11) (6, 6) (6, 11) (6, 11)
P7 (3.5, 9.5, 10, 11) (3.5, 9.5) (3.5, 10) (3.5, 11) (9.5, 10) (9.5, 11) (10, 11)
P8 (3.5, 18, 16, 12) (3.5, 18) (3.5, 16) (3.5, 12) (18, 16) (18, 12) (16, 12)
P9 (6, 20, 9, 2) (6, 20) (6, 9) (6, 2) (20, 9) (20, 2) (9, 2)
P10 (10, 13, 5, 12) (10, 13) (10, 5) (10, 12) (13, 5) (13, 12) (5, 12)

O(n*log(n)). The time complexity of projecting the projected points onto the cells is bounded

by O(n). Thus, the time complexity of step (2) is bounded by O(n*log(n)). The time

complexity of steps (3)-(7) is bounded by O(p2)=O(1), where p is a user-specified constant.

Since the points on each cell is sorted, the time complexity of merging the points on two

adjacent frequent cells together is bounded by O(n1+n2), where n1 and n2 are the number of

points in the first and second cells, respectively. Thus, the time complexity of steps (8)-(10) is

bounded by O(n). Since the number of dimensional pairs is bounded by O(m2), the time

complexity of the find2FS procedure is bounded by O(m2*(n*log(n)+p2+n))=O(m2*n*log(n)).

Table 1. Projecting the points onto projected spaces.

ID Data point (d1, d2) (d1, d3) (d1, d4) (d2, d3) (d2, d4) (d3, d4)

P1 (0, 0, 0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

P2 (2.4, 3, 3.5, 2) (2.4, 3) (2.4, 3.5) (2.4, 2) (3, 3.5) (3, 2) (3.5, 2)

P3 (1.5, 6, 11, 2) (1.5, 6) (1.5, 11) (1.5, 2) (6, 11) (6, 2) (11, 2)

P4 (2.3, 9, 9, 7) (2.3, 9) (2.3, 9) (2.3, 7) (9, 9) (9, 7) (9, 7)

P5 (3, 7, 2, 10) (3, 7) (3, 2) (3, 10) (7, 2) (7, 10) (2, 10)

P6 (4, 6, 6, 11) (4, 6) (4, 6) (4, 11) (6, 6) (6, 11) (6, 11)

P7 (3.5, 9.5, 10, 11) (3.5, 9.5) (3.5, 10) (3.5, 11) (9.5, 10) (9.5, 11) (10, 11)

P8 (3.5, 18, 16, 12) (3.5, 18) (3.5, 16) (3.5, 12) (18, 16) (18, 12) (16, 12)

P9 (6, 20, 9, 2) (6, 20) (6, 9) (6, 2) (20, 9) (20, 2) (9, 2)

P10 (10, 13, 5, 12) (10, 13) (10, 5) (10, 12) (13, 5) (13, 12) (5, 12)

C1

C3C2

C6

C5C4

 0 5 10 15 20

D
im

ension
2

Dimension 1

0 2.5 5 7.5 10

Figure 4. An example of getting point groups in cells.

3.2 Finding frequent k-subspaces

Let Dim(�) denote the dimensions spanned by a frequent subspace �. Two frequent

k-subspaces � and � are joinable if Dim(�) and Dim(�) have k-1 dimensions in common,

where k> 2. Next, let us consider how to use two joinable frequent k-subspaces � and � to

generate a (k+1)-subspace �, where Dim(�) is Dim(�)∪Dim(�). To find the points contained

by �, we can intersect the point group of � with that of �. If the number of points in � is not

8

Figure 4: An example of getting point groups in cells.

3.2 Finding frequent k-subspaces

Let Dim(α) denote the dimensions spanned by a frequent subspace α. Two frequent
k-subspaces α and β are joinable if Dim(α) and Dim(β) have k-1 dimensions in common, where
k≥ 2. Next, let us consider how to use two joinable frequent k-subspaces α and β to generate a
(k+1)-subspace γ, where Dim(γ) is Dim(α)∪Dim(β). To find the points contained by γ, we can
intersect the point group of α with that of β. If the number of points in γ is not less than σ, γ is a
frequent (k+1)-subspace.

Mining Significant Subspaces 35

For example, Figure 6 shows how to use two joinable frequent k-subspaces α and β to
generate a frequent (k+1)-subspace, where σ = 2. The point group of α contains P1, P2, and P3,
while the point group of β contains P1, P3, and P4. We intersect both point groups and obtain the
resultant point group which contains two points, P1 and P3. Since σ = 2, γ is a frequent (k+1)-
subspace.

less than σ, γ is a frequent (k+1)-subspace.
For example, Figure 6 shows how to use two joinable frequent k-subspaces α and β to

generate a frequent (k+1)-subspace, where σ = 2. The point group of α contains P1, P2, and P3,
while the point group of β contains P1, P3, and P4. We intersect both point groups and obtain
the resultant point group which contains two points, P1 and P3. Since σ = 2, γ is a frequent
(k+1)-subspace.

 FG(d1, d2) FG(d1, d3) FG(d1, d4) FG(d2, d3) FG(d2, d4) FG(d3, d4)

Point G11 G21 G31 G41 G51 G61

groups

 G22 G32 G42 G52 G62

P1
P2
P3
P4
P5
P6
P7

P1
P2

P1
P2
P3

P1
P2

P1
P2
P3

P1
P2

P3
P4

P5

P6
P7
P8

P3
P4
P7

P5
P6
P7

P3
P9

Figure 5. An example of finding frequent 2-subspaces.

We can join the joinable frequent subspaces to generate larger frequent subspaces in a
depth-first search (DFS) manner: (1) For each frequent 2-subspace, we join it to the other
joinable frequent 2-subspace to generate a 3-subspace and check if the 3-subspace is frequent.
Thus, we find all frequent 3-subspaces, each of which is associated with a point group. (2)
For each frequent k-subspace (k> 2), we join it to its joinable k-subspaces to generate frequent
(k+1)-subspaces in a DFS manner. (3) Let k = k+1, we repeat steps 2-3 until no more frequent
subspace can be generated. The procedure of finding frequent k-subspaces is shown in Figure
7.

9

Figure 5: An example of finding frequent 2-subspaces.

We can join the joinable frequent subspaces to generate larger frequent subspaces in a
depth-first search (DFS) manner: (1) For each frequent 2-subspace, we join it to the other
joinable frequent 2-subspace to generate a 3-subspace and check if the 3-subspace is frequent.
Thus, we find all frequent 3-subspaces, each of which is associated with a point group. (2)
For each frequent k-subspace (k> 2), we join it to its joinable k-subspaces to generate frequent
(k+1)-subspaces in a DFS manner. (3) Let k = k+1, we repeat steps 2-3 until no more frequent
subspace can be generated. The procedure of finding frequent k-subspaces is shown in Figure 7.

 Point groups

 Frequent (k+1)-subspace: γ
 d1, d2, d3, …,dk-1, dk, d’k

 Point group

P1
P2
P3

P1
P3

P4

P1
P3

 Frequent k-subspace: α Frequent k-subspace: β
 d1, d2, d3, …,dk-1, dk d1, d2, d3, …,dk-1, d’k

Figure 6. An example of generating frequent (k+1)-subspace.

Procedure: findKFS
Input: a joinable class containing frequent k-subspaces S, and a minimum support

threshold σ.
Output: all frequent subspaces FS.
(1) for each k-subspace α in S do
(2) Let Fk+1 be ∅;
(3) for each k-subspace β in S, which is joinable to α, β>α do
(4) Let Dim(α) be d1, d2, …,dk;
(5) Let Dim(β) be d1, d2, …,d’k;
(6) Let γ be the frequent (k+1)-subspace generated by joining α and β; That is,

Dim(γ) contains d1, d2, …,dk, and d’k;
(7) Intersect the point group of α with the point group of β;
(8) If the number of points in the point group obtained in step (7) is not less than σ,

γ is frequent. Collect it into Fk+1 and FS;
(9) endfor;
(10) Call findKFS(Fk+1, σ, FS);
(11) endfor;

Figure 7.The findKFS procedure.

10

Figure 6: An example of generating frequent (k+1)-subspace.

資訊管理學報　第十七卷　專刊36

Procedure: findKFS
Input: a joinable class containing frequent k-subspaces S, and a minimum support threshold σ.
Output: all frequent subspaces FS.
(1) for each k-subspace α in S do
(2) Let Fk+1 be ∅;
(3) for each k-subspace β in S, which is joinable to α, β>α do
(4) Let Dim(α) be d1, d2, …,dk;
(5) Let Dim(β) be d1, d2, …,d’k;
(6) Let �γ be the frequent (k+1)-subspace generated by joining α and β; That is,

Dim(γ) contains d1, d2, …,dk, and d’k;
(7) Intersect the point group of α with the point group of β;
(8) If t h e number of points in the point group obtained in step (7) is not less than σ,

γ is frequent. Collect it into Fk+1 and FS;
(9) endfor;
(10) Call findKFS(Fk+1, σ, FS);
(11) endfor;

Figure 7: The findKFS procedure.

d1, d2
G11(P1,P2,P3,P4,

P5,P6,P7)

d1, d3
G21(P1,P2)

G22(P3,P4)

d1, d4
G31(P1,P2,P3)

G32(P5,P6,P7,P8)

d2, d4
G51(P1,P2,P3)

G52(P5,P6,P7)

d3, d4
G61(P1,P2)

G62(P3,P9)

d1, d2, d3
G’11(P1,P2)

G’12(P3,P4)

d1, d2, d4
G’21(P1,P2)

G’22(P5,P6,P7)

d1, d3, d4
G’31(P1,P2)

d2, d3, d4
G’41(P1,P2)

G42(P3,P4,P7)

d2, d3
G41(P1,P2)

G’’11(P1,P2)

d1, d2, d3, d4

Figure 8. The frequent subspaces mined from the dataset shown in Table 1.
Let’s consider the frequent subspaces shown in Figure 5. The frequent 2-subspaces G21

and G22 are joinable to G11. By intersecting the point groups of G21 and G22 with the point
group of G11, we obtain two point groups {P1, P2} and {P3, P4}, respectively. Since the
minimum support threshold is 2, these point groups intersected are frequent. That is, we find
two frequent 3-subspaces in dimensions (d1, d2, d3). Similarly, we can find all frequent
3-subspaces and frequent 4-subspaces as shown in Figure 8, where the edge between two
frequent subspaces means that the child subspace is derived from the parent subspace.
Lemma 2. The time complexity of the findKFS procedure is bounded by O(N*v*n), where n
is the number of points in the dataset, v is the average number of joinable subspaces for each
frequent subspace, and N is the number of frequent subspaces found.
Proof: The time complexity of steps (4)-(6) and (8) is bounded by O(1). Since the points in
subspaces α and β are sorted, the time complexity of merging two point groups together in
step (7) is bounded by O(n). Thus, the time complexity of joining two frequent k-subspaces is
bounded by O(n). There are N frequent subspaces in total, each of which has v joinable
subspaces on average. Therefore, the time complexity of the findKFS procedure is bounded
by O(N*v*n).

3.3 Subspace summarization

After finding all frequent subspaces, we use a greedy pattern summarization approach to
summarize the subspaces. By doing so, we can reduce the number of frequent subspaces and
select the significant ones.

We introduce ω as a weight and assign each frequent subspace a score by the greedy
pattern summarization approach. The score is computed by the equation Score(S) =
ω×Q(S)+(1-ω)×V(S), where Q(S) is the quality of the subspace S and V(S) is the coverage of
the subspace S. The quality is defined as 1-H/log(c), where H is the entropy of S, and c is the

11

Figure 8. The frequent subspaces mined from the dataset shown in Table 1.

Let ś consider the frequent subspaces shown in Figure 5. The frequent 2-subspaces G21 and
G22 are joinable to G11. By intersecting the point groups of G21 and G22 with the point group
of G11, we obtain two point groups {P1, P2} and {P3, P4}, respectively. Since the minimum
support threshold is 2, these point groups intersected are frequent. That is, we find two frequent
3-subspaces in dimensions (d1, d2, d3). Similarly, we can find all frequent 3-subspaces and

Mining Significant Subspaces 37

frequent 4-subspaces as shown in Figure 8, where the edge between two frequent subspaces
means that the child subspace is derived from the parent subspace.
Lemma 2. The time complexity of the findKFS procedure is bounded by O(N*v*n), where n
is the number of points in the dataset, v is the average number of joinable subspaces for each
frequent subspace, and N is the number of frequent subspaces found.
Proof: The time complexity of steps (4)-(6) and (8) is bounded by O(1). Since the points in
subspaces α and β are sorted, the time complexity of merging two point groups together in
step (7) is bounded by O(n). Thus, the time complexity of joining two frequent k-subspaces
is bounded by O(n). There are N frequent subspaces in total, each of which has v joinable
subspaces on average. Therefore, the time complexity of the findKFS procedure is bounded by
O(N*v*n).

3.3 Subspace summarization

After finding all frequent subspaces, we use a greedy pattern summarization approach to
summarize the subspaces. By doing so, we can reduce the number of frequent subspaces and
select the significant ones.

We introduce ω as a weight and assign each frequent subspace a score by the greedy
pattern summarization approach. The score is computed by the equation Score(S) = ω×Q(S)+(1-
ω)×V(S), where Q(S) is the quality of the subspace S and V(S) is the coverage of the subspace
S. The quality is defined as 1-H/log(c), where H is the entropy of S, and c is the number of
different classes in the dataset. Dividing H by log(c) is used to normalize the entropy between 0
and 1. The coverage is defined as the number of points in the selected subspaces divided by the
total number of points in the dataset.

First, we select the frequent subspace with the highest score. Next, each subspace is
updated by eliminating the points contained by the selected subspaces so that the remaining
points in a subspace do not overlap with those in the selected subspaces. Then, the score of each
subspace is modified by using the points in the original subspace to compute the quality and
using the remaining points in the updated subspace to compute the coverage. After the score of
each subspace is modified, we continue to select the subspace with the highest score. The above
steps are repeated until the score of every frequent space is less than a user-specified threshold τ.
The procedure of selecting the significant subspaces is shown in Figure 9.

Let us consider the points shown in Table 1 again, where the class of each point is shown
in Table 2. The frequent subspaces found are shown in Figure 8. Let ω = 0.5. We first compute
the score for each frequent subspace as shown in Table 3. Since the score of subspace G32 is the
highest, G32 is added to SFS. Then, the scores of the other subspaces are updated as shown in
Table 4, where the score of G31 is the highest. Thus, G31 is added to SFS. Then, the scores of

資訊管理學報　第十七卷　專刊38

the other subspaces are updated as shown in Table 5. G11 is added to SFS and the scores of the
remaining subspaces are updated. Let the score threshold τ be 0.1. Since the updated scores of
the non-empty frequent subspaces are all less than τ, no more subspaces can be chosen. Finally,
we obtain 3 subspaces as shown in Table 6. That is, we select 3 significant subspaces from 18
frequent ones.

Procedure: subspace summarization
Input: all frequent subspaces FS, a weight ω, and a score threshold τ.
Output: the selected frequent subspaces SFS.
(1) for each frequent subspace S in FS do
(2) Compute its score Score(S)=ω×Q(S)+(1-ω)×C(S);
(3) endfor;
(4) Select the subspace with the highest score to SFS;
(5) while the score of any frequent space in FS is not less than τ do
(6) for each frequent subspace S’ in FS do
(7) Th e subspace S’ is updated by eliminating the data points which are contained

by the subspaces in SFS;
(8) if the subspace does not contain any point then
(9) Score(S)́=0;
(10) else
(11) Scor e(S’)=ω×Q(S’)+(1-ω)×C(S’), where Q is computed in the original

subspace and C is computed in the updated subspace;
(12) endif;
(13) endfor;
(14) Select the subspace with the highest score to SFS;
(15) endwhile;

Figure 9: The subspace summarization procedure.

Lemma 3. The time complexity of the subspace summarization procedure is bounded by
O(M*(N+n)), where n is the number of points in the dataset, N is the number of frequent
subspaces found, and M is the number of significant subspaces selected.
Proof: The time complexity of steps (1)-(3) is bounded by O(N). The time complexity of
selecting the highest score in step (4) is bounded by O(N), too. The time complexity of updating
S’ by eliminating the data points which are contained by the subspaces in SFS is bounded by
O(n1+n2)=O(n), where n1 and n2 are the number of points in S’ and SFS, respectively. The time
complexity of steps (8)-(12) is bounded by O(N). Since the while-loop from step (5) to step

Mining Significant Subspaces 39

(15) is executed M-1 times, the time complexity of the subspace summarization procedure is
bounded by O(N+M*(N+n))= O(M*(N+n)).
T h e o re m 1 . T h e t i m e c o m p l e x i t y o f t h e p r o p o s e d m e t h o d i s b o u n d e d b y
O(m2*n*log(n)+N*v*n), where m is the number of dimensions in the space, n is the number of
points in the dataset, N is the number of frequent subspaces found, and v is the average number
of joinable subspaces for each frequent subspace.
Proof: Since the proposed method consists of three phases: finding frequent 2-subspaces,
finding frequent k-subspaces, and subspace summarization, its time complexity is bounded by
O(m2*n*log(n)+N*v*n+M*(N+n)), where M is the number of significant subspaces selected.
However, M<<N and M<<n. Therefore, the time complexity of the proposed method is
bounded by O(m2*n*log(n)+N*v*n).

Table 2: The classes of the points.

Data point P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Class 1 1 1 1 2 2 2 2 2 1

Table 3: The score of each frequent subspace in FS.

FS Quality Coverage Score
G11{P1, P2, P3, P4, P5, P6, P7} 0.015 0.7 0.357
G21{P1, P2} 1 0.2 0.6
G22{P3, P4} 1 0.2 0.6
G31{P1, P2, P3} 1 0.3 0.65
G32{P5, P6, P7, P8} (add to SFS) 1 0.4 0.7
G41{P1, P2} 1 0.2 0.6
G42{P3, P4, P7} 0.082 0.3 0.191
G51{P1, P2, P3} 1 0.3 0.65
G52{P5, P6, P7} 1 0.3 0.65
G61{P1, P2} 1 0.2 0.6
G62{P3, P9} 0 0.2 0.1
G 1́1{P1, P2} 1 0.2 0.6
G 1́2{P3, P4} 1 0.2 0.6
G 2́1{P1, P2, P3} 1 0.3 0.65
G 2́2{P5, P6, P7} 1 0.3 0.65
G 3́1{P1, P2} 1 0.2 0.6
G 4́1{P1, P2} 1 0.2 0.6
G´́11{P1, P2} 1 0.2 0.6

資訊管理學報　第十七卷　專刊40

Table 4: Updated scores of the frequent subspaces in FS.

Updated FS´ Updated quality Updated coverage Updated score
G11{P1, P2, P3, P4} 0.015 0.4 0.207
G21{P1, P2} 1 0.2 0.6
G22{P3, P2} 1 0.2 0.6
G31{P1, P2, P3} (add to SFS) 1 0.3 0.65
G32{P5, P6, P7, P8} (in SFS) 0 0 0
G41{P1, P2} 1 0.2 0.6
G42{P3, P4} 0.082 0.2 0.141
G51{P1, P2, P3} 1 0.3 0.65
G52∅ 0 0 0
G61{P1, P2} 1 0.2 0.6
G62{P3, P9} 0 0.2 0.1
G 1́1{P1, P2} 1 0.2 0.6
G 1́2{P3, P4} 1 0.2 0.6
G 2́1{P1, P2, P3} 1 0.3 0.65
G 2́2 ∅ 0 0 0
G 3́1{P1, P2} 1 0.2 0.6
G 4́1{P1, P2} 1 0.2 0.6
G´́11{P1, P2} 1 0.2 0.6

Table 5: Updated scores of the subspaces with a non-empty point group.

Updated FS´ Updated quality Updated coverage Updated score
G11{P4} (add to SFS) 1 0.1 0.55
G22{P4} 1 0.1 0.55
G31{P1, P2, P3} (in SFS) 0 0 0
G32{P5, P6, P7, P8} (in SFS) 0 0 0
G42{P4} 1 0.1 0.55
G62{P9} 0 0.1 0.05
G’12{P4} 1 0.1 0.55

Table 6: Selected frequent subspaces.

Selecting order SFS Quality Coverage
1 G32{P5, P6, P7, P8} 100% 40%
2 G31{P1, P2, P3} 100% 70%
3 G11{P4} 100% 80%

Mining Significant Subspaces 41

4. PERFORMANCE EVALUATION

In this section, we compared the proposed method with FIRES (Kriegel et al. 2005)
and DUSC (Assent et al. 2007) by both synthetic and real datasets. All the algorithms were
implemented using Microsoft Visual C++ 2005. All of experiments were performed on an IBM
Compatible PC with Intel Core 2 Quad CPU Q6600 @ 2.40GHz, 2.0GB main memory, running
on Windows XP Professional.

To evaluate the performance of the proposed method, we first analyzed the time
complexity of the comparing methods. Based on DBSCAN, FIRES (Kriegel et al. 2005) is
a generic framework for finding the subspaces of high-dimensional data. It first generates
all 1-dimensional clusters using DBSCAN. The time complexity of this step is bounded by
O(m*n*log(n)), where m is the number of dimensions in the space and n is the number of
points in the dataset. Then, it generates subspace clusters by grouping the best-merge-clusters
together, where the time complexity of this step is bounded by O(NF2), and NF is the number
of base clusters. Finally, it refines the subspace clusters generated by pruning the candidates
and using DBSCAN to cluster subspaces again, where the time complexity is bounded by
O(NF2+NF*n*log(n)). Therefore, the time complexity of FIRES is bounded by O(m*n*log(n)
+NF2+NF2+NF*n*log(n))=O((m+NF)*n*log(n)+NF2).

DUSC (Assent et al. 2007) adopts different density thresholds for different subspaces and
finds the S-connected clusters, where two data points in a cluster are connected to each other if
the distance between them is within a user-specified threshold. The time complexity of finding
the S-connected clusters is bounded by O(ND*m2*n2), where ND is the number of frequent
subspaces found. A cluster forms a subspace if its density is greater than a user-specified
threshold and the number of data points in the cluster is larger than the minimum cluster size.
After generating the subspace clusters, it prunes the redundant ones, where the time complexity
of this step is bounded by O(ND2). Therefore, the time complexity of DUSC is bounded by
O(ND*m2*n2+ND2). The time complexities of the proposed method, FIRES, and DUSC are
summarized in Table 7.

Table 7: The time complexities.

Method Time complexity
Our method O(m2*n*log(n)+N*v*n)
FIRES O((m+NF)*n*log(n)+NF2)
DUSC O(ND*m2*n2+ND2)

資訊管理學報　第十七卷　專刊42

4.1 Synthetic dataset

We use a synthetic dataset to test the scalability and efficiency of the proposed method. The
synthetic data is generated by the methods similar to those used in (Agrawal et al. 1998; Cheng
et al. 1999; Kriegel et al. 2005). The default settings of the parameters used in the data generator
are shown in Table 8.

Table 8: The default settings.

Parameters Default value
Number of points 50000
Number of dimensions 10
Number of cells 40×40
Density threshold 0.01
Minimum support 0.1

Figure 10 illustrates the execution time versus the number of dimensions, where the number
of points is 50000, the number of cells is 40×40, the density threshold is 0.01, and the minimum
support threshold is 0.1. When the number of dimensions increases, the execution times of both
methods increase. However, the proposed method runs faster than FIRES and DUSC. This is
because FIRES uses DBSCAN to cluster the neighboring points and DBSCAN spends much
time in finding an appropriate radius of a cluster. On the other hand, it is quite time-consuming
for DUSC to find the S-connected clusters. However, the proposed method uses the grid-based
clustering method to find the frequent 2-subspaces and then uses the joinable classes and point
groups to find the frequent k-subspaces in a DFS manner, k> 2. By using the joinable subspaces,
the proposed method can localize the search space in a small number of point groups. Thus, the
proposed method is more efficient than FIRES and DUSC.

Figure 10. Execution time versus number of dimensions.

Figure 11. Execution time versus number of data points.

Figure 11 shows the execution time versus the number of points, where the number of
dimensions is 10, the number of cells is 40×40, the density threshold is 0.01, and the
minimum support threshold is 0.1. When the number of points increases, the execution times
of these three methods increase linearly. However, the proposed method runs faster than
FIRES and DUSC.

17

Figure 10: Execution time versus number of dimensions.

Mining Significant Subspaces 43

Figure 10. Execution time versus number of dimensions.

Figure 11. Execution time versus number of data points.

Figure 11 shows the execution time versus the number of points, where the number of
dimensions is 10, the number of cells is 40×40, the density threshold is 0.01, and the
minimum support threshold is 0.1. When the number of points increases, the execution times
of these three methods increase linearly. However, the proposed method runs faster than
FIRES and DUSC.

17

Figure 11: Execution time versus number of data points.

Figure 11 shows the execution time versus the number of points, where the number of
dimensions is 10, the number of cells is 40×40, the density threshold is 0.01, and the minimum
support threshold is 0.1. When the number of points increases, the execution times of these three
methods increase linearly. However, the proposed method runs faster than FIRES and DUSC.

Figure 12. Execution time and number of subspaces versus number of cells.

Figure 13. Execution time and number of subspaces versus minimum support.

Figure 12 shows the execution time and the number of subspaces versus the number of
cells, where the number of cells is increased from 5×5 to 40×40. When number of cells
increases, the execution time decreases. However, the number of frequent subspaces
increases when the number of cells equals to 5×5, 10×10, and 15×15. This is because there
are less candidate subspaces to be generated for the small number of cells. The number of
frequent subspaces decreases when the number of cells is not less than 15×15. As the size of
each cell decreases, many subspaces become infrequent under the given density and
minimum support thresholds. The number of cells can be adjusted to generate the subspaces
in different granularity.

Figure 13 illustrates the execution time and number of subspaces versus the minimum
support threshold. Figure 14 shows the execution time and number of subspaces versus the

18

Figure 12: Execution time and number of subspaces versus number of cells.

Figure 12. Execution time and number of subspaces versus number of cells.

Figure 13. Execution time and number of subspaces versus minimum support.

Figure 12 shows the execution time and the number of subspaces versus the number of
cells, where the number of cells is increased from 5×5 to 40×40. When number of cells
increases, the execution time decreases. However, the number of frequent subspaces
increases when the number of cells equals to 5×5, 10×10, and 15×15. This is because there
are less candidate subspaces to be generated for the small number of cells. The number of
frequent subspaces decreases when the number of cells is not less than 15×15. As the size of
each cell decreases, many subspaces become infrequent under the given density and
minimum support thresholds. The number of cells can be adjusted to generate the subspaces
in different granularity.

Figure 13 illustrates the execution time and number of subspaces versus the minimum
support threshold. Figure 14 shows the execution time and number of subspaces versus the

18

Figure 13: Execution time and number of subspaces versus minimum support.

資訊管理學報　第十七卷　專刊44

Figure 12 shows the execution time and the number of subspaces versus the number
of cells, where the number of cells is increased from 5×5 to 40×40. When number of cells
increases, the execution time decreases. However, the number of frequent subspaces increases
when the number of cells equals to 5×5, 10×10, and 15×15. This is because there are less
candidate subspaces to be generated for the small number of cells. The number of frequent
subspaces decreases when the number of cells is not less than 15×15. As the size of each
cell decreases, many subspaces become infrequent under the given density and minimum
support thresholds. The number of cells can be adjusted to generate the subspaces in different
granularity.

Figure 13 illustrates the execution time and number of subspaces versus the minimum
support threshold. Figure 14 shows the execution time and number of subspaces versus the
density threshold. Both figures have similar tendency. That is, when the density or minimum
support threshold increases, the number of subspaces and the execution time decrease. This is
because both thresholds are used to decide whether a subspace is frequent or not. The larger the
threshold is, the fewer frequent subspaces are.

density threshold. Both figures have similar tendency. That is, when the density or minimum
support threshold increases, the number of subspaces and the execution time decrease. This is
because both thresholds are used to decide whether a subspace is frequent or not. The larger
the threshold is, the fewer frequent subspaces are.

Figure 14. Execution time and number of subspaces versus density threshold.

In summary, the proposed method uses the grid-based clustering method to find the
frequent 2-subspaces and then utilizes the joinable subspaces to find the frequent k-subspaces
in a DFS manner, k> 2. By using the joinable subspaces, the proposed method can localize
the search space in a small number of points groups. Thus, the proposed method is more
efficient than FIRES and DUSC.

4.2 Real datasets

We compared the proposed method with FIRES (Kriegel et al. 2005) and DUSC (Assent
et al. 2007) by six real datasets (Newman et al. 1998), namely, pendigits, glass, vowel, wine,
handwritten digit, and letter recognition. Since DUSC uses the quality and coverage to
evaluate the quality of subspaces selected, we adopt the same measures to evaluate the
proposed algorithm and the comparing algorithms.

The pendigits dataset has 16 dimensions and 7494 data instances, where all the instances
in the dataset are classified into 10 classes. The glass dataset has 9 dimensions and 214 data
instances, where all the instances in the dataset are classified into 6 classes. The vowel dataset
has 10 dimensions and 990 data instances, where all the instances in the dataset are classified
into 11 classes. The wine dataset has 13 dimensions and 178 data instances, where all the
instances in the dataset are classified into 3 classes. The handwritten digit dataset has 256
dimensions and 1593 data instances, where all the instances in the dataset are classified into
10 classes. The letter recognition dataset has 16 dimensions and 20000 data instances, where
all the instances in the dataset are classified into 26 classes.

19

Figure 14: Execution time and number of subspaces versus density threshold.

In summary, the proposed method uses the grid-based clustering method to find the
frequent 2-subspaces and then utilizes the joinable subspaces to find the frequent k-subspaces
in a DFS manner, k> 2. By using the joinable subspaces, the proposed method can localize the
search space in a small number of points groups. Thus, the proposed method is more efficient
than FIRES and DUSC.

4.2 Real datasets

We compared the proposed method with FIRES (Kriegel et al. 2005) and DUSC (Assent
et al. 2007) by six real datasets (Newman et al. 1998), namely, pendigits, glass, vowel, wine,

Mining Significant Subspaces 45

handwritten digit, and letter recognition. Since DUSC uses the quality and coverage to evaluate
the quality of subspaces selected, we adopt the same measures to evaluate the proposed
algorithm and the comparing algorithms.

The pendigits dataset has 16 dimensions and 7494 data instances, where all the instances
in the dataset are classified into 10 classes. The glass dataset has 9 dimensions and 214 data
instances, where all the instances in the dataset are classified into 6 classes. The vowel dataset
has 10 dimensions and 990 data instances, where all the instances in the dataset are classified
into 11 classes. The wine dataset has 13 dimensions and 178 data instances, where all the
instances in the dataset are classified into 3 classes. The handwritten digit dataset has 256
dimensions and 1593 data instances, where all the instances in the dataset are classified into 10
classes. The letter recognition dataset has 16 dimensions and 20000 data instances, where all the
instances in the dataset are classified into 26 classes.

Table 9: The results of the six datasets.

Our method DUSC FIRES
Quality Coverage Quality Coverage Quality Coverage

Pendigits 99% 75% 86% 74% 55% 100%
Glass 99% 95% 60% 87% 23% 98%
Vowel 92% 94% 82% 70% 0.003% 98%
Wine 100% 99% 68% 97% 2.9% 100%
Handwritten digit 96% 100% 33% 86% 5.7% 100%
Letter recognition 88% 83% 32% 81% 7.6% 100%

Table 10: Number of subspaces selected.

Number of subspaces
Our method DUSC FIRES

Pendigits 132 14 378
Glass 7 7 2
Vowel 69 140 1
Wine 10 47 18
Handwritten digit 61 74 7
Letter recognition 98 96 46

Table 9 shows the results of the six datasets obtained by the proposed method, FIRES and
DUSC. Table 10 illustrates the number of subspaces selected by these three methods. FIRES
has less quality because it uses DBSCAN to cluster the neighboring data instances together. The
subspaces obtained may contain many points of different classes. Thus, FIRES has bad quality

資訊管理學報　第十七卷　專刊46

but good coverage. Generally speaking, the higher coverage will lead to the lower quality. This
is because we need to include more data points in the selected subspaces in order to increase the
coverage. Consequently, the possibility of a subspace containing the data points with different
classes will increase. Thus, as the coverage is getting higher, the quality will become lower. For
example, for the vowel and glass datasets, FIRES combines many data points with different
classes into a subspace. The coverage of both datasets is high and the quality is comparatively
low for FIRES. DUSC combines fewer data points with different classes into a subspace.
Its coverage is less than that of FIRES; however, its quality is better than that of FIRES. On
the other hand, the proposed method uses the greedy summarization approach to select the
significant subspaces by balancing both quality and coverage simultaneously. Therefore, the
proposed method has better quality and coverage than DUSC, and better quality than FIRES.

Table 11: Confusion matrix for the wine dataset.

Class SFS1 SFS2 SFS3 SFS4 SFS5 SFS6 SFS7 SFS8 SFS9 SFS10

1 42 0 0 0 8 0 10 0 0 0
2 0 0 36 19 0 7 0 0 5 0
3 0 38 0 0 0 0 0 6 0 4

Table 11 shows the subspaces selected by the proposed method for the wine dataset, where
the classes are the wines derived from three different cultivars. The first subspace SFS1 contains
42 instances of class 1. The second subspace SFS2 contains 38 instances of class 3, and so on.

Table 12: The wines in the first three subspaces.

Dimension All wines SFS1 SFS2 SFS3

alcohol 11.03～14.83 13.39～14.83 - -
magnesium 70～162 - - 84～94
total phenols 0.98～3.88 2.35～3.88 - -
flavonoids 0.34～5.08 - 0.47～1.28 -
nonflavonoid phenols 0.13～0.66 0.17～0.5 - 0.19～0.66
color intensity 1.28～13 3.52～8.9 3.85～11.75 1.28～4.8
hue 0.48～1.71 - 0.54～0.96 -
OD280/OD315 of diluted wines 1.27～4 - - 1.82～3.57
proline 278～1680 - - 278～714

Table 12 illustrates the attributes of the wines in the first three subspaces, where the values
in the cells represent the characteristics of the wines in the subspaces and “-＂ represents the
attribute not included in the subspace. For example, SFS1 contains the wines with high alcohol,
high total phenols, middle nonflavonoid phenols, and middle color intensity. SFS2 consists of the
wines with low flavonoids, middle color intensity, and low hue. SFS3 is comprised of the wines

Mining Significant Subspaces 47

with low magnesium, middle nonflavonoid phenols, low color intensity, middle OD280/OD315
of diluted wines, and low proline.

In summary, since the proposed method first finds all frequent subspaces and then uses the
subspace summarization approach to select the significant subspaces, it can balance both quality
and coverage simultaneously by considering all frequent subspaces. Therefore, the proposed
method has better quality and coverage than DUSC, and better quality than FIRES.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel subspace mining method. The proposed method
consists of three phases. First, we generate all frequent 2-subspaces. Second, for each frequent
k-subspace (k≥ 2), we join it to each joinable k-subspace and generate its frequent super (k+1)-
subspace. Let k = k+1, the steps in phase two are performed recursively in a depth-first search
manner until no more frequent subspaces can be found. Finally, we adopt a greedy algorithm to
summarize all frequent subspaces found and select the significant ones.

Since the proposed method uses the joinable subspaces to find the frequent subspaces in
a DFS manner, the proposed method can localize the search space in a small number of point
groups. Thus, the proposed method is more efficient than FIRES and DUSC. Moreover, since
the proposed method first finds all frequent subspaces and then uses the subspace summarization
approach to select the significant ones. It can balance both quality and coverage simultaneously
by considering all frequent subspaces. The experimental results show that the proposed method
is efficient and scalable, has better quality and coverage than DUSC, and has better quality than
FIRES in the real datasets.

In addition to the applications of the real datasets shown in Section 4.2, the proposed
method can be also applied to the following potential areas such as customer segmentation,
customer profiling, stock portfolio selection, trend analysis, spam mail filtering, text-mining,
and bioinformatics. However, the proposed method still has some limitations. First, we use a
simple score function to compute the score for each frequent subspace. Thus, it is worth further
study on how to provide a better score function for a complex system. Finally, it is worth
developing an algorithm which embeds the constraint of score computation in the process of
mining frequent subspaces.

6. ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their helpful comments and
suggestions. This research was supported in part by the National Science Council of Republic of
China under Grant No. NSC 97-2410-H-002-126-MY3.

資訊管理學報　第十七卷　專刊48

REFERENCE

1. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., and Park, J.S.“Fast algorithms for
projected clustering,＂In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1999, pp. 61-72.

2. Aggarwal, C.C., and Yu, P.S.“Finding generalized projected clusters in highdimensional
spaces,＂In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2000, pp. 70-81.

3. Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P.“Automatic subspace clustering
of high dimensional data,＂ In Proceedings of ACM SIGMOD International Conference on
Management of Data, 1998, pp. 94-105.

4. Assent, I., Krieger, R., Müller, E., and Seidl, T.“DUSC: Dimensionality unbiased
subspace clustering,＂In Proceedings of the Seventh IEEE International Conference on
Data Mining, 2007, pp. 409-414.

5. Cheng, C.H., Fu, A.W.C., and Zhang, Y.“Entropy-based subspace clustering for mining
numerical data,＂In Proceedings�of� the�fifth�ACM�SIGKDD�International�Conference�on�
Knowledge�Discovery�and�Data�Mining, 1999, pp. 84-93.

6. Glomba, M., and Markowska-Kaczmar, U.“IBUSCA: A grid-based bottom-up subspace
clustering algorithm,＂ In Proceedings of the Sixth International Conference on Intelligent
Systems�Design�and�Application, 2006, pp. 671-676.

7. Goil, S., Nagesh, H., and Choudhary, A. Mafia:�Efficient�and�scalable�subspace�clustering�
for�very�large�data�sets, Technical Report CPDC-TR-9906-010, Northwestern University,
1999.

8. Kriegel, H.P., Kröger, P., Renz, M., and Wurst, S.“A genetic framework for efficient
subspace clustering of high-dimensional data,＂ In Proceedings of the Fifth IEEE
International Conference on Data Mining, 2005, pp. 250-257.

9. Michael, S. Introduction�to�the�Theory�of�Computation, PWS Publishing Company, 1996.
10. Newman, D., Hettich, S., Blake, C., and Merz, C. UCI�repository�of�MLDBs, 1998 (available

online at http://archive.ics.uci.edu/ml/).
11. Lu, Y., Tian, Q., Liu, F., Sanchez, M., and Wang, Y.“Interactive semisupervised learning

for microarray analysis,＂IEEE/ACM�Transactions�on�Computational� biology�and�
bioinformatics (4:2), 2007, pp. 190-203.

12. Parsons, L., Haque, E., Liu, H.“Subspace clustering for high dimensional data: A
review,＂ ACM�SIGKDD�Explorations�Newsletter�(6:1), 2004, pp. 90-105.

13. Patrikainen, A., and Meila, M.“Comparing subspace clusterings,＂ IEEE Transactions on
Knowledge�and�Data�Engineering�(18:7), July 2006, pp. 902-916.

Mining Significant Subspaces 49

14. Sequeira, K., and Zaki, M.SCHISM: A new approach for interesting subspace mining,＂ In
Proceedings of the Fourth IEEE International Conference on Data Mining, 2004, pp. 186-
193.

15. Woo, K.G., and Lee, J.H. FINDIT:�A�fast�and�intelligent�subspace�clustering�algorithm�
using dimension voting, PhD thesis, Korea Advanced Institute of Science and Technology,
Taejon, Korea, 2002.

16. Yang, J., Wang, W., Wang, H., and Yu, P. δ-clusters: Capturing subspace correlation
in a large data set,＂In Proceedings of eighteenth International Conference on Data
Engineering, 2002, pp. 517-528.

資訊管理學報　第十七卷　專刊50

