SNEES8R F+tE FT 27

Mining Significant Subspaces

Anthony J.T. Lee
Department of Information Management, National Taiwan University

Ming-Chih Lin
Department of Information Management, National Taiwan University

Yun-Ru Wang
Department of Information Management, National Taiwan University

Kuo-Tay Chen
Department of Accounting, National Taiwan University

Abstract

As both the number of dimensions increases, existing clustering methods in full feature
space are not appropriate to cluster data in databases. Thus, the subspace clustering has attracted
more and more attention recently. In this paper, we propose a novel method to mine significant
subspaces from all frequent subspaces, where a subspace is frequent if it contains enough
data points. The proposed method consists of three phases. First, we generate all frequent
2-dimensional subspaces. Second, we recursively combine frequent k-dimensional subspaces to
generate frequent (k+1)-dimensional subspaces, k> 2. Finally, we adopt a greedy algorithm to
summarize the frequent subspaces generated and select the significant ones. The experimental
results show that the proposed method has better quality and coverage than DUSC, and better
quality than FIRES.

Key words : subspace mining, subspace clustering, frequent subspace, data mining, greedy
algorithm

28 ENEESR FTts FH

TR T ERZAHIRY

CEE S EE S SRR LT

B XS A

RS
M3 A A a3 e BLA AR 23 A AR e B ik 0 R R A b B
B EH e R FRTFEMABHAOTHBREZER - EABHXT » KR E—
By 7 kAR E R FEM - KOPTRBG T EOE=ZMEER - &4 KIEA
AR IR PR s EEAFSAETER K& KM AR@y 7 K65
BAREF R AR ERYALETFEM &g KOVRA GEEH AL XML KA
AR ETEMTRE TR TEM c TRERBA T KMFRENFTEERET 5 @k
FAFIRES * 2% H F W& H 7 d o B 4EDUSC -

.

AT TEMEY - TEM> A BAETEM - AHKRED > FERAE

Mining Significant Subspaces 29

1. INTRODUCTION

Clustering is an important technique to find the relationships in many applications such
as customer behavior analysis, document classification, and Web log analysis (Parsons et al.
2004; Patrikainen et al. 2006). As both the number of dimensions increases, existing methods of
clustering data in full feature space are not appropriate for these applications (Lu et al. 2007).
Thus, the subspace clustering has attracted more and more attention recently.

The subspace clustering methods can be classified into two classes: bottom-up and top-
down, depending on the search direction (Lu et al. 2007). The bottom-up methods include
CLIQUE (Agrawal et al. 1998), ENCLUS (Cheng et al. 1999), MAFIA (Goil et al. 1999),
SCHISM (Sequeira & Zaki 2004), IBUSCA (Glomba & Markowska-Kaczmar 2006), FIRES
(Kriegel et al. 2005), and DUSC (Assent et al. 2007). CLIQUE (Agrawal et al. 1998) is a
density-based method which partitions each dimension into several intervals of equal length,
and then uses an Apriori-like approach to find interested subspaces. Based on CLIQUE,
ENCLUS (Cheng et al. 1999) uses entropy to cope with the criterions of coverage, density and
correlation, where the coverage increases as the entropy decreases. MAFIA (Goil et al. 1999)
exploits histograms to decide how many grids to be created and uses an adaptive grid-based
algorithm to partition the dimensions. SCHISM (Sequeira & Zaki 2004) adopts the support and
Chernoff-Hoeffding bounds as the density thresholds and searches for maximal subspaces in
a depth-first search manner. IBUSCA (Glomba & Markowska-Kaczmar 2006) is a grid-based
algorithm which needs a parameter to determine the density threshold, where the data space is
split based on histograms to form dense subspaces. Based on DBSCAN, FIRES (Kriegel et al.
2005) is a generic framework for finding the subspaces of high-dimensional data. DUSC (Assent
et al. 2007) adopts different density thresholds for different subspaces and finds the S-connected
clusters, where two data points in a cluster are connected to each other if the distance between
them is within a user-specified threshold.

Generally speaking, bottom-up methods take advantage of the downward closure property
of density to reduce the search space. The downward closure property of density means that if
a (k+1)-dimensional subspace R is dense, all k-dimensional subspaces of R should be dense, k>
2. Bottom-up methods first create bins for each dimension and select those bins with densities
above a given threshold. Adjacent dense subspaces (or bins) are then combined to form clusters.
The methods proceed until no more dense subspaces can be found. However, one cluster may
be mistakenly reported as two smaller clusters. The nature of the bottom-up methods leads to
overlapping clusters, where one instance can be in zero or more clusters.

Top-down methods include PROCLUS (Aggarwal et al. 1999), ORCLUS (Aggarwal & Yu

30 &ENEESR FTts FH

2000), FINDIT (Woo & Lee 2002), and 0-Clusters (Yang et al. 2002). PROCLUS (Aggarwal
et al. 1999) partitions the data points to axis-aligned subspaces and refines them by a hill-
climbing approach. ORCLUS (Aggarwal & Yu 2000) is similar to PROCLUS but uses random
sampling to improve the processing time. It uses the method of singular value decomposition
to find arbitrarily-oriented clusters. FINDIT (Woo & Lee 2002) introduces the dimension-
oriented distance as a distance measure, where the subspaces with higher number of dimensions
are more meaningful. 6-Clusters (Yang et al. 2002) uses the Pearson correlation to measure
coherence among all data points. It separates data points into several clusters, and randomly
swaps the points in different clusters to improve the quality of clusters. The top-down methods
start by finding an initial approximation of the clusters in full feature space with equally
weighted dimensions. Next, each dimension is assigned a weight for each cluster. The updated
weights are then used in the next iteration to regenerate the clusters. This approach requires
multiple iterations of expensive clustering algorithms in the full set of dimensions. Many of the
implementations of this strategy use a sampling technique to improve performance. Top-down
algorithms divide the dataset into several partitions so that each data point is assigned to only
one cluster. Parameter tuning is necessary in order to get meaningful results. Often the critical
parameters for top-down algorithms are the number of clusters and the size of subspace, which
are often difficult to determine ahead of time. Moreover, top-down algorithms tend to find
clusters of the same or similar size.

The subspace clustering methods mentioned above cluster data points into groups by
merging or splitting dimensions. The top-down methods do not allow overlapping clusters,
where every data point belongs to just one cluster. But in real world, it is not appropriate
to assign a data point to only one cluster (Kriegel et al. 2005). In addition, most bottom-
up subspace mining methods find interested subspaces by pruning the potential subspaces
according to monotonicity. That is, they only take a local view of subspaces to resolve this
problem since they do not globally generate all potential subspaces to find the interested ones.

Therefore, in this paper, we propose a novel method to mine significant subspaces.
The proposed method consists of three phases. First, we generate all frequent 2-dimensional
subspaces. Second, we recursively combine frequent k-dimensional subspaces to generate
frequent (k+1)-dimensional subspaces, k> 2. Finally, we adopt a greedy approach (Michael
1996) to summarize all frequent subspaces found and select the significant ones.

The contributions of this paper are summarized as follows: (1) We propose a novel method
to mine significant subspaces. (2) We adopt a greedy approach to summarize all frequent
subspaces and select the significant ones. (3) The experimental results show that the proposed
method has better quality and coverage than DUSC, and better quality than FIRES.

The rest of this paper is organized as follows. Section 2 describes preliminary concepts and

problem definitions. Section 3 discusses the algorithm in detail and demonstrates how it works.

Mining Significant Subspaces 31

Section 4 shows the performance evaluation. Finally, the conclusions and future work are made

in Section 5.

2. PRELIMINARIES AND PROBLEM
DEFINITIONS

Consider an input dataset D containing n data points (points for short) P, P2, ***,Py in an
m-dimensional data space. Each point is represented by (x1, x2, ***,Xm), where xiSR and 1 <
< m. We first project every point onto a pair of dimensions (or dimension pair). Since there are
m dimensions in the data space, we have m*(m-1)/2 dimension pairs. A point, (x1, X2, ***, Xm),
projected to the projected space formed by a dimension pair (di, d;) is denoted as (x;, xj), 1< i<
Jj<m.

To cluster the projected points into several groups in a two-dimensional projected space,
we partition each dimension into several bins (or intervals). That is, the projected space is
divided into several cells, where each cell may contain a group of points (point group). A cell
denoted by (i, j) is located at the ith interval of the first dimension and the jth interval of the
second dimension. If the number of points in a cell is not less than a user-specified density
threshold o, the cell is frequent. A cell (i, j) is adjacent to another cell (i ", j ") if li-i'I< 1 and |j-
J’I< 1. The points in a frequent cell can be combined with those in the other adjacent frequent
cells to form a larger point group. Then, we obtain a list of point groups, each of which forms a
subspace. For example, Figure 1 shows that the points are combined into two point groups (or
subspaces), where the projected space is divided into 4x4 = 16 cells. Similarly, we can obtain a
list of subspaces for each dimension pair.

If a subspace is formed by [dimensions, it is called an /-subspace. To find the number
of points in an /-subspace, we can intersect the point groups of the corresponding /*(I-1)/2
projected dimension pairs. Consequently, every subspace is associated with a point group. A
subspace is frequent if the number of points in the subspace is not less than a user-specified
minimum support threshold o.

Dimension 1

Z uolsuawi(

v
Figure 1: Partitioning the points into two groups.

32 ENEESR FTts FH

For example, assume that 0 = 2. Given five points in a 3-dimensional data space, we
project them into dimensions (di, d2) and (di, d3). The points are divided into two frequent
subspaces G = {P», Ps} and G2 = {P1, P3, P4} for the projected space formed by (di, d2), Gai
= {P), P4} and G2 = {P>, P3, Ps} for the projected space formed by (di, d3) as shown in Figure 2.
Since G31 = G11MNGxn = {P>, Ps} and G32 = G121\ G21 = {P1, P4}, G31 and G32 both contain two

points. Thus, they are frequent 3-subspaces.

Projected spaces (d, da) (d\, d5) (d, da, d)

Point groups Gu‘ G21‘ G31‘
P
G : Gxn Gy
P
Py

Figure 2: Generating a 3-subspace.

The objective of the proposed method is to find all frequent subspaces in a dataset with
respect to the user-specified density and minimum support thresholds, and then select the

significant ones from the frequent subspaces found.

3. THE PROPOSED METHOD

The proposed method consists of three phases: finding frequent 2-subspaces, finding
frequent k-subspaces, and subspace summarization. These phases will be described in detail in

the following subsections.

3.1 Finding frequent 2-subspaces

To find all frequent 2-subspaces, for each dimension pair, we project all points in the
dataset D onto the corresponding 2-dimensional space which is partitioned into pxp cells. Next,
we check if the number of points in each cell is not less than a density threshold . If this is the
case, the cell is frequent. For each frequent cell, the points in the cell are combined with those
in the other adjacent frequent cells to form a larger point group. This step is repeated until no
more adjacent frequent cells can be combined. Finally, we obtain all frequent 2-subspaces in the

2-dimensional space. The procedure of finding frequent 2-subspaces is shown in Figure 3.

Mining Significant Subspaces 33

For example, let us consider a dataset containing ten points in a 4-dimensional space,
where the projected points in each projected space are shown in Table 1. Assume that ¢ = 2 and
o = 2. To find frequent subspaces in the projected space formed by (d1, d), the projected space
is partitioned into 4x4 cells. The smallest and largest values of the first dimension of the points
in Table 1 are 0 (P1) and 10 (P1o), respectively. Thus, the first dimension is equally partitioned
into four intervals: [0, 2.5), [2.5, 5), [5, 7.5), and [7.5, 10]. Similarly, the second dimension is
equally partitioned into four intervals: [0, 5), [5, 10), [10, 15), and [15, 20]. In Figure 4, cell C;
contains {Pi, P>}, C> contains {P3, P4}, C3 contains {Ps, Ps, P7}, C4 contains {Pg}, Cs contains
{P9}, and Cs contains {P1o}. Since cells Ci, C2 and C3 are frequent and adjacent to each other,
we can combine the points in these cells together and form a point group {P1, P2, P3, Pa, Ps, Ps,
P7}. There are seven points in the point group. Thus, the point group (or subspace) is frequent.
Similarly, we can obtain all frequent 2-subspaces as shown in Figure 5, where FG(d;, d;)
contains all frequent 2-subspaces in the projected space formed by (di, d;).

Procedure: find2FS
Input: all points in the dataset which is partitioned into pxp cells, a density threshold o.
Output:a list of point groups.

(1) for each dimension pair do

2) Sort the projected points and project them onto the cells;

3) for each cell do

4) if the number of data points in the cell > o then

) The cell is frequent;

©) endif;

@) endfor;

(8) for each frequent cell do

) Combine the points in this cell with those in other adjacent frequent cells

to form a larger point group until no more adjacent frequent cells can be
combined;

(10) endfor;

(11) endfor;

Figure 3: The find2FS procedure.

Lemma 1. The time complexity of the find2FS procedure is bounded by O(m?*n*log(n)), where
m is the number of dimensions in the space and 7 is the number of points in the dataset.

Proof: For each dimension pair, we can project all the points onto the space formed by the
dimension pair. Then, we sort the projected points by the first dimension and then by the second
dimension. The time complexity of sorting these projected points is bounded by O(n*log(n)).

34 &ENEESR FTts FH

The time complexity of projecting the projected points onto the cells is bounded by O(n). Thus,
the time complexity of step (2) is bounded by O(n*log(n)). The time complexity of steps (3)-
(7) is bounded by O(p*=0(1), where p is a user-specified constant. Since the points on each
cell is sorted, the time complexity of merging the points on two adjacent frequent cells together
is bounded by O(ni+n2), where ni and n2 are the number of points in the first and second cells,
respectively. Thus, the time complexity of steps (8)-(10) is bounded by O(n). Since the number
of dimensional pairs is bounded by O(m?), the time complexity of the find2FS procedure is
bounded by O(m?*(n*log(n)+p*+n))=0(m>*n*log(n)).

Table 1: Projecting the points onto projected spaces.

ID Data point (d1, do) (d1, d3) (d1, dy) (da, d3) (da, dy) (d3, da)
Py 0,0,0,0) 0,0) 0,0) 0,0) 0,0) 0,0) 0,0)

Py (24,3,35,2) 24,3) (24,3.5) 24,2 3,3.5) 3,2) 3.5,2)
P3 (1.5,6,11,2) (1.5,6) (1.5, 11) (1.5,2) 6, 11) 6,2) (11,2)
Py 2.3,9,9,7) 2.3,9) 2.3,9) 2.3,7) 9,9 9,7 O,7)

Ps 3,7,2,10) 3,7 3,2) 3,10) (7,2) (7, 10) (2, 10)
Pg 4,6,6,11) 4, 6) 4, 6) 4, 11) (6, 6) 6, 11) (6, 11)

P; | (35,95,10,11) | (35,95 | (35100 | 35.11) | (95,100 | (9.5,11) (10, 11)
Ps | (35,18,16,12) | (35,18) | (35.16) | (35.12) | (18,16) (18, 12) (16, 12)
Py (6,20,9,2) (6, 20) (6,9) (6,2) (20,9) (20,2) ©,2)

P | (10,13,5,12) (10, 13) (10, 5) (10, 12) (13,5) (13, 12) (5, 12)

Dimension 1
0 25 5 75 10

S 0
Y

7 UOTSUSWI(]
01

Csy | Cs

0c ¢I

v

Figure 4: An example of getting point groups in cells.

3.2 Finding frequent k-subspaces

Let Dim(a) denote the dimensions spanned by a frequent subspace a. Two frequent
k-subspaces o and 3 are joinable if Dim(a) and Dim(f3) have k-1 dimensions in common, where
k> 2. Next, let us consider how to use two joinable frequent k-subspaces @ and 3 to generate a
(k+1)-subspace v, where Dim(y) is Dim(a) UDim(f). To find the points contained by y, we can
intersect the point group of @ with that of . If the number of points in y is not less than g, y is a

frequent (k+1)-subspace.

Mining Significant Subspaces 35

For example, Figure 6 shows how to use two joinable frequent k-subspaces @ and 3 to
generate a frequent (k+1)-subspace, where 0 = 2. The point group of a contains Pi, P>, and Ps3,
while the point group of 3 contains Pi, P3, and P4. We intersect both point groups and obtain the
resultant point group which contains two points, P1 and P3. Since 0 = 2, y is a frequent (k+1)-

subspace.

FG(dy, dy) FG(dy,ds) FG(di,ds) FG(dyd3) FG(dyds) FG(ds,ds)

Point G

groups

Figure 5: An example of finding frequent 2-subspaces.

We can join the joinable frequent subspaces to generate larger frequent subspaces in a
depth-first search (DFS) manner: (1) For each frequent 2-subspace, we join it to the other
joinable frequent 2-subspace to generate a 3-subspace and check if the 3-subspace is frequent.
Thus, we find all frequent 3-subspaces, each of which is associated with a point group. (2)
For each frequent k-subspace (k> 2), we join it to its joinable k-subspaces to generate frequent
(k+1)-subspaces in a DFS manner. (3) Let k = k+1, we repeat steps 2-3 until no more frequent
subspace can be generated. The procedure of finding frequent k-subspaces is shown in Figure 7.

Frequent k-subspace: a Frequent k-subspace:
d, do, d, ...dx.1, dk d, do, d3, ... i1, d '

Point groups
Frequent (k+1)-subspace: y
di, do, ds,dx.1, dk, d'x

Point group

Figure 6: An example of generating frequent (k+1)-subspace.

36

&ENEESR FTts FH

Procedure: findKFS

Input: a joinable class containing frequent k-subspaces S, and a minimum support threshold o.

Output:all frequent subspaces FS.

(1) for each k-subspace a in S do
2) Let Fis1 be ©;
3) for each k-subspace 3 in S, which is joinable to a, f>a do
4) Let Dim(a) be di, da, **+,dx;
5) Let Dim(f) be di, d», **+,d’;
(6) Let v be the frequent (k+1)-subspace generated by joining « and 3; That is,
Dim(y) contains di, d2, **-,dx, and d’;
@) Intersect the point group of a with the point group of (3;
(8) If the number of points in the point group obtained in step (7) is not less than o,
y is frequent. Collect it into Fi+1 and FS;
©) endfor;
(10) Call findKFS(F+1, 0, FS);
(11) endfor;
Figure 7: The findKFS procedure.
dy, d> di, d3 dy, ds d», d3 do, dy ds, dy
G(Py1,P2,P3,Py, Gy(P1,P>) G51(Py,P>,P5) Gy1(Py,P>) Gs1(Py,P,,P5) Ge1(P1,P>)

di, d», ds dy, da, ds di, ds, dy da, d5, ds

G'11(P,P,) G'5(Py,Py) G '51(P1,Py) G '31(P1,P3)

G’ 15(P5,Py) G 55(Ps,Ps,P7)

dy, do, d5, ds
G "1(P1,Py)

Figure 8. The frequent subspaces mined from the dataset shown in Table 1.

Let's consider the frequent subspaces shown in Figure 5. The frequent 2-subspaces G21 and

G2 are joinable to Gii. By intersecting the point groups of G2 and G22 with the point group

of G11, we obtain two point groups {P1, P2} and {P3, P4}, respectively. Since the minimum

support threshold is 2, these point groups intersected are frequent. That is, we find two frequent

3-subspaces in dimensions (di, d», d3). Similarly, we can find all frequent 3-subspaces and

Mining Significant Subspaces 37

frequent 4-subspaces as shown in Figure 8, where the edge between two frequent subspaces
means that the child subspace is derived from the parent subspace.

Lemma 2. The time complexity of the findKFS procedure is bounded by O(N*v*n), where n
is the number of points in the dataset, v is the average number of joinable subspaces for each
frequent subspace, and N is the number of frequent subspaces found.

Proof: The time complexity of steps (4)-(6) and (8) is bounded by O(1). Since the points in
subspaces a and f are sorted, the time complexity of merging two point groups together in
step (7) is bounded by O(n). Thus, the time complexity of joining two frequent k-subspaces
is bounded by O(n). There are N frequent subspaces in total, each of which has v joinable
subspaces on average. Therefore, the time complexity of the findKFS procedure is bounded by
O(N*v*n).

3.3 Subspace summarization

After finding all frequent subspaces, we use a greedy pattern summarization approach to
summarize the subspaces. By doing so, we can reduce the number of frequent subspaces and
select the significant ones.

We introduce w as a weight and assign each frequent subspace a score by the greedy
pattern summarization approach. The score is computed by the equation Score(S) = wxQ(S)+(1-
w)xV(S), where Q(S) is the quality of the subspace S and V(S) is the coverage of the subspace
S. The quality is defined as 1-H/log(c), where H is the entropy of S, and ¢ is the number of
different classes in the dataset. Dividing H by log(c) is used to normalize the entropy between 0
and 1. The coverage is defined as the number of points in the selected subspaces divided by the
total number of points in the dataset.

First, we select the frequent subspace with the highest score. Next, each subspace is
updated by eliminating the points contained by the selected subspaces so that the remaining
points in a subspace do not overlap with those in the selected subspaces. Then, the score of each
subspace is modified by using the points in the original subspace to compute the quality and
using the remaining points in the updated subspace to compute the coverage. After the score of
each subspace is modified, we continue to select the subspace with the highest score. The above
steps are repeated until the score of every frequent space is less than a user-specified threshold T.
The procedure of selecting the significant subspaces is shown in Figure 9.

Let us consider the points shown in Table 1 again, where the class of each point is shown
in Table 2. The frequent subspaces found are shown in Figure 8. Let w = 0.5. We first compute
the score for each frequent subspace as shown in Table 3. Since the score of subspace G2 is the
highest, G32 is added to SFS. Then, the scores of the other subspaces are updated as shown in
Table 4, where the score of G is the highest. Thus, G3i is added to SFS. Then, the scores of

38 &ENEESR FTts FH

the other subspaces are updated as shown in Table 5. G1; is added to SF'S and the scores of the
remaining subspaces are updated. Let the score threshold T be 0.1. Since the updated scores of
the non-empty frequent subspaces are all less than T, no more subspaces can be chosen. Finally,
we obtain 3 subspaces as shown in Table 6. That is, we select 3 significant subspaces from 18

frequent ones.

Procedure: subspace summarization

Input: all frequent subspaces FS, a weight w, and a score threshold 7.
Output:the selected frequent subspaces SFS.

(1) for each frequent subspace S in F'S do

2) Compute its score Score(S)=wxQ(S)+(1-w)xC(S);

3) endfor;

@) Select the subspace with the highest score to SF'S;

(5) while the score of any frequent space in FS is not less than 7 do

(6) for each frequent subspace S’in F'S do

@) The subspace S’ is updated by eliminating the data points which are contained
by the subspaces in SFS;

8) if the subspace does not contain any point then

) Score(S")=0;

(10) else

(11) Score(S")=wxQ(S")+(1-w)xC(S’), where Q is computed in the original

subspace and C is computed in the updated subspace;

(12) endif’,

(13) endfor;

(14) Select the subspace with the highest score to SF'S;

(15) endwhile;

Figure 9: The subspace summarization procedure.

Lemma 3. The time complexity of the subspace summarization procedure is bounded by
O(M*(N+n)), where n is the number of points in the dataset, N is the number of frequent
subspaces found, and M is the number of significant subspaces selected.

Proof: The time complexity of steps (1)-(3) is bounded by O(N). The time complexity of
selecting the highest score in step (4) is bounded by O(N), too. The time complexity of updating
S’ by eliminating the data points which are contained by the subspaces in SF'S is bounded by
O(n1+n2)=0(n), where ni and n2 are the number of points in S’ and SFS, respectively. The time

complexity of steps (8)-(12) is bounded by O(N). Since the while-loop from step (5) to ste
plexity ps (8)-(y O(p p p

Mining Significant Subspaces 39

(15) is executed M-1 times, the time complexity of the subspace summarization procedure is
bounded by O(N+M*(N+n))= O(M*(N+n)).

Theorem 1. The time complexity of the proposed method is bounded by
O(m?*n*log(n)+N*v*n), where m is the number of dimensions in the space, n is the number of
points in the dataset, N is the number of frequent subspaces found, and v is the average number
of joinable subspaces for each frequent subspace.

Proof: Since the proposed method consists of three phases: finding frequent 2-subspaces,
finding frequent k-subspaces, and subspace summarization, its time complexity is bounded by
O(m?*n*log(n)+N*v¥n+M*(N+n)), where M is the number of significant subspaces selected.
However, M<<N and M<<n. Therefore, the time complexity of the proposed method is
bounded by O(m?*n*log(n)+N*v*n).

Table 2: The classes of the points.

Data point| P P, P; Py Ps Pg Py Pg Py Pio
Class 1 1 1 1 2 2 2 2 2 1

Table 3: The score of each frequent subspace in FS.

FS Quality Coverage Score
G11{P1, Py, P3, P4, Ps, Ps, P7} 0.015 0.7 0.357
Goi{P), P2} 1 0.2 0.6
G2o{P3, P4} 1 0.2 0.6
G31{P), Py, P3} 1 0.3 0.65
G32{Ps, Pg, P7, Pg} (add to SFS) 1 0.4 0.7
Ga1{P, P2} 1 0.2 0.6
Gyo{P3, P4, P7} 0.082 0.3 0.191
Gs1{P\, Py, P3} 1 0.3 0.65
Gsp{Ps, Pg, P7} 1 0.3 0.65
Ge1{P1, P2} 1 0.2 0.6
Gea{P3, Po} 0 0.2 0.1
G'1i{P1, P2} 1 0.2 0.6
G'12{P3, Py} 1 0.2 0.6
G21{P1, P2, P3} 1 0.3 0.65
G'n{Ps, Ps, P7} 1 0.3 0.65
G31{P1, P2} 1 0.2 0.6
G41{P1, P2} 1 0.2 0.6
G 11{P), P2} 1 0.2 0.6

40 SNEESR Ft+ts 51
Table 4: Updated scores of the frequent subspaces in FS.

Updated FS’ Updated quality Updated coverage Updated score
G11{Py, P2, P3, P4} 0.015 0.4 0.207
Gy1{P1, Py} 1 0.2 0.6
G2o{P3, Py} 1 0.2 0.6
G31{P1, P, P3} (add to SFS) 1 0.3 0.65
G32{Ps, Pg, P7, Pg} (in SFS) 0 0 0
Gy1{P1, Py} 1 0.2 0.6
G42{P3, P4} 0.082 0.2 0.141
Gs1{P1, P2, P3} 1 0.3 0.65
G52 @ 0 0 0
Gei1{P1, P2} 1 0.2 0.6
Gea{P3, Py} 0 0.2 0.1
G1{Pi, P2} 1 0.2 0.6
G 12{P3, P4} 1 0.2 0.6
G»1{P1, P», P3} 1 0.3 0.65
Gy @ 0 0 0
G31{P1, P2} 1 0.2 0.6
G41{P1, P2} 1 0.2 0.6
G’ 11{P1, Py} 1 0.2 0.6

Table 5: Updated scores of the subspaces with a non-empty point group.

Updated FS’ Updated quality Updated coverage Updated score
G11{P4} (add to SFS) 1 0.1 0.55
Goo{P4} 1 0.1 0.55
G31{P1, P2, P3} (in SFS) 0 0
G32{Ps, Pg, P7, Pg} (in SFS) 0 0
Gu{Ps} 1 0.1 0.55
Ge2{Po} 0 0.1 0.05
G'12{P4} 1 0.1 0.55
Table 6: Selected frequent subspaces.
Selecting order SES Quality Coverage

1 G32{Ps, P, P7, Ps} 100% 40%

2 G31{P1, Py, P3} 100% 70%

3 GuiPs} 100% 80%

Mining Significant Subspaces 41

4. PERFORMANCE EVALUATION

In this section, we compared the proposed method with FIRES (Kriegel et al. 2005)
and DUSC (Assent et al. 2007) by both synthetic and real datasets. All the algorithms were
implemented using Microsoft Visual C++ 2005. All of experiments were performed on an IBM
Compatible PC with Intel Core 2 Quad CPU Q6600 @ 2.40GHz, 2.0GB main memory, running
on Windows XP Professional.

To evaluate the performance of the proposed method, we first analyzed the time
complexity of the comparing methods. Based on DBSCAN, FIRES (Kriegel et al. 2005) is
a generic framework for finding the subspaces of high-dimensional data. It first generates
all 1-dimensional clusters using DBSCAN. The time complexity of this step is bounded by
O(m*n*log(n)), where m is the number of dimensions in the space and »n is the number of
points in the dataset. Then, it generates subspace clusters by grouping the best-merge-clusters
together, where the time complexity of this step is bounded by O(N¢?), and Nr is the number
of base clusters. Finally, it refines the subspace clusters generated by pruning the candidates
and using DBSCAN to cluster subspaces again, where the time complexity is bounded by
O(Nr*+Nr*n*log(n)). Therefore, the time complexity of FIRES is bounded by O(m*n*log(n)
+ N2+ Ne2+Ne*n*log(n))=0((m+Ng)*n*log(n)+Ng?).

DUSC (Assent et al. 2007) adopts different density thresholds for different subspaces and
finds the S-connected clusters, where two data points in a cluster are connected to each other if
the distance between them is within a user-specified threshold. The time complexity of finding
the S-connected clusters is bounded by O(Np*m?*n?), where Np is the number of frequent
subspaces found. A cluster forms a subspace if its density is greater than a user-specified
threshold and the number of data points in the cluster is larger than the minimum cluster size.
After generating the subspace clusters, it prunes the redundant ones, where the time complexity
of this step is bounded by O(Np?). Therefore, the time complexity of DUSC is bounded by
O(Np*m?*n?+Np?). The time complexities of the proposed method, FIRES, and DUSC are

summarized in Table 7.

Table 7: The time complexities.

Method Time complexity
Our method O(m**n*log(n)+N*v*n)
FIRES O((m+Ng)*n*log(n)+Ng2)
DUSC O(Np*m2*n2+Np?)

42 &ENEESR FTts FH

4.1 Synthetic dataset

We use a synthetic dataset to test the scalability and efficiency of the proposed method. The
synthetic data is generated by the methods similar to those used in (Agrawal et al. 1998; Cheng
et al. 1999; Kriegel et al. 2005). The default settings of the parameters used in the data generator

are shown in Table 8.
Table 8: The default settings.

Parameters Default value
Number of points 50000
Number of dimensions 10
Number of cells 40x40
Density threshold 0.01
Minimum support 0.1

Figure 10 illustrates the execution time versus the number of dimensions, where the number
of points is 50000, the number of cells is 40x40, the density threshold is 0.01, and the minimum
support threshold is 0.1. When the number of dimensions increases, the execution times of both
methods increase. However, the proposed method runs faster than FIRES and DUSC. This is
because FIRES uses DBSCAN to cluster the neighboring points and DBSCAN spends much
time in finding an appropriate radius of a cluster. On the other hand, it is quite time-consuming
for DUSC to find the S-connected clusters. However, the proposed method uses the grid-based
clustering method to find the frequent 2-subspaces and then uses the joinable classes and point
groups to find the frequent k-subspaces in a DFS manner, k> 2. By using the joinable subspaces,
the proposed method can localize the search space in a small number of point groups. Thus, the
proposed method is more efficient than FIRES and DUSC.

| ——ours =l FIRES +DUSC|

40000
35000 -
30000 A
25000
20000 A
15000
10000
5000

Execution time (sec)

5 10 15 20 25 30

Number of dimensions

Figure 10: Execution time versus number of dimensions.

Mining Significant Subspaces 43

| ——ours =l FIRES +Du5c|

100000

10000
1000 1
100 |
10
1| go——¢—— 79

0.1

Execution time (sec)

Number of data points {K)

Figure 11: Execution time versus number of data points.

Figure 11 shows the execution time versus the number of points, where the number of
dimensions is 10, the number of cells is 40x40, the density threshold is 0.01, and the minimum
support threshold is 0.1. When the number of points increases, the execution times of these three
methods increase linearly. However, the proposed method runs faster than FIRES and DUSC.

I —&—Time =fli= Numberof subspaces I

120 £000

%]
% 100 | 5000 &
g 80| - a000 &
2 3
S 60 - - 3000 o
— [=]
-)
§ 40 - 2000 &
x E
20 | - 1000 3

0 0

5% 10*10 15%15 20%20 25*25 30%30 35*35 40%40

Number of cells

Figure 12: Execution time and number of subspaces versus number of cells.

I ——Time =l Numberof subspaces |

35 - 3500
30 3000 @
r 8
o 25 - 2500 &
15 o
S 20 4 2000 3
5 5
g 15 1500 8
2 10 - 1000 2
5 5

5] 500 2

0 0

0.01 0.02 0.03 0.04 005 006 007 008 008 01

Minimum support

Figure 13: Execution time and number of subspaces versus minimum support.

44 &ENEESR FTts FH

Figure 12 shows the execution time and the number of subspaces versus the number
of cells, where the number of cells is increased from 5x5 to 40x40. When number of cells
increases, the execution time decreases. However, the number of frequent subspaces increases
when the number of cells equals to 5x5, 10x10, and 15x15. This is because there are less
candidate subspaces to be generated for the small number of cells. The number of frequent
subspaces decreases when the number of cells is not less than 15x15. As the size of each
cell decreases, many subspaces become infrequent under the given density and minimum
support thresholds. The number of cells can be adjusted to generate the subspaces in different
granularity.

Figure 13 illustrates the execution time and number of subspaces versus the minimum
support threshold. Figure 14 shows the execution time and number of subspaces versus the
density threshold. Both figures have similar tendency. That is, when the density or minimum
support threshold increases, the number of subspaces and the execution time decrease. This is
because both thresholds are used to decide whether a subspace is frequent or not. The larger the

threshold is, the fewer frequent subspaces are.

I ——Time ={i= Number of subspaces

100 5000
= 80 5000 &
— [}
g 4000 ¥
£ 60] S
5 3000
S 40 | p
3 2000 &
2 0| £
1000 3
0 ‘ 0

001 002 0.03 004 005 0.06 007 008 009 01

Density threshold

Figure 14: Execution time and number of subspaces versus density threshold.

In summary, the proposed method uses the grid-based clustering method to find the
frequent 2-subspaces and then utilizes the joinable subspaces to find the frequent k-subspaces
in a DFS manner, k> 2. By using the joinable subspaces, the proposed method can localize the
search space in a small number of points groups. Thus, the proposed method is more efficient
than FIRES and DUSC.

4.2 Real datasets

We compared the proposed method with FIRES (Kriegel et al. 2005) and DUSC (Assent

et al. 2007) by six real datasets (Newman et al. 1998), namely, pendigits, glass, vowel, wine,

Mining Significant Subspaces 45

handwritten digit, and letter recognition. Since DUSC uses the quality and coverage to evaluate
the quality of subspaces selected, we adopt the same measures to evaluate the proposed
algorithm and the comparing algorithms.

The pendigits dataset has 16 dimensions and 7494 data instances, where all the instances
in the dataset are classified into 10 classes. The glass dataset has 9 dimensions and 214 data
instances, where all the instances in the dataset are classified into 6 classes. The vowel dataset
has 10 dimensions and 990 data instances, where all the instances in the dataset are classified
into 11 classes. The wine dataset has 13 dimensions and 178 data instances, where all the
instances in the dataset are classified into 3 classes. The handwritten digit dataset has 256
dimensions and 1593 data instances, where all the instances in the dataset are classified into 10
classes. The letter recognition dataset has 16 dimensions and 20000 data instances, where all the

instances in the dataset are classified into 26 classes.

Table 9: The results of the six datasets.

Our method DUSC FIRES
Quality Coverage Quality Coverage Quality Coverage
Pendigits 99% 75% 86% 74% 55% 100%
Glass 99% 95% 60% 87% 23% 98%
Vowel 92% 94% 82% 70% 0.003% 98%
Wine 100% 99% 68% 97% 2.9% 100%
Handwritten digit 96% 100% 33% 86% 5.7% 100%
Letter recognition 88% 83% 32% 81% 7.6% 100%
Table 10: Number of subspaces selected.
Number of subspaces
Our method DUSC FIRES

Pendigits 132 14 378
Glass 7 7 2
Vowel 69 140 1
Wine 10 47 18
Handwritten digit 61 74 7
Letter recognition 98 96 46

Table 9 shows the results of the six datasets obtained by the proposed method, FIRES and
DUSC. Table 10 illustrates the number of subspaces selected by these three methods. FIRES
has less quality because it uses DBSCAN to cluster the neighboring data instances together. The

subspaces obtained may contain many points of different classes. Thus, FIRES has bad quality

46 &ENEESR FTts FH

but good coverage. Generally speaking, the higher coverage will lead to the lower quality. This
is because we need to include more data points in the selected subspaces in order to increase the
coverage. Consequently, the possibility of a subspace containing the data points with different
classes will increase. Thus, as the coverage is getting higher, the quality will become lower. For
example, for the vowel and glass datasets, FIRES combines many data points with different
classes into a subspace. The coverage of both datasets is high and the quality is comparatively
low for FIRES. DUSC combines fewer data points with different classes into a subspace.
Its coverage is less than that of FIRES; however, its quality is better than that of FIRES. On
the other hand, the proposed method uses the greedy summarization approach to select the
significant subspaces by balancing both quality and coverage simultaneously. Therefore, the
proposed method has better quality and coverage than DUSC, and better quality than FIRES.

Table 11: Confusion matrix for the wine dataset.

Class SES, SFS) SFS;3 SFSy SFSs SFSe SFS7 SFSg SFSy SFES10
1 42 0 0 0 8 0 10 0 0 0
2 0 0 36 19 0 7 0 0 5 0
3 0 38 0 0 0 0 0 6 0 4

Table 11 shows the subspaces selected by the proposed method for the wine dataset, where
the classes are the wines derived from three different cultivars. The first subspace SF'S| contains

42 instances of class 1. The second subspace SFS> contains 38 instances of class 3, and so on.

Table 12: The wines in the first three subspaces.

Dimension All wines SFS SFS, SFS3
alcohol 11.03~14.83 13.39~14.83 - -
magnesium 70~162 - - 84~94
total phenols 0.98~3.88 2.35~3.88 - -
flavonoids 0.34~5.08 - 0.47~1.28 -
nonflavonoid phenols 0.13~0.66 0.17~0.5 - 0.19~0.66
color intensity 1.28~13 3.52~8.9 3.85~11.75 1.28~4.8
hue 0.48~1.71 - 0.54~0.96 -
0OD280/0D315 of diluted wines 1.27~4 - - 1.82~3.57
proline 278~1680 - - 278~714

Table 12 illustrates the attributes of the wines in the first three subspaces, where the values

in the cells represent the characteristics of the wines in the subspaces and “-" represents the
attribute not included in the subspace. For example, SFS; contains the wines with high alcohol,
high total phenols, middle nonflavonoid phenols, and middle color intensity. SF'S> consists of the

wines with low flavonoids, middle color intensity, and low hue. SF'S3 is comprised of the wines

Mining Significant Subspaces 47

with low magnesium, middle nonflavonoid phenols, low color intensity, middle OD280/0D315
of diluted wines, and low proline.

In summary, since the proposed method first finds all frequent subspaces and then uses the
subspace summarization approach to select the significant subspaces, it can balance both quality
and coverage simultaneously by considering all frequent subspaces. Therefore, the proposed
method has better quality and coverage than DUSC, and better quality than FIRES.

S. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel subspace mining method. The proposed method
consists of three phases. First, we generate all frequent 2-subspaces. Second, for each frequent
k-subspace (k> 2), we join it to each joinable k-subspace and generate its frequent super (k+1)-
subspace. Let k = k+1, the steps in phase two are performed recursively in a depth-first search
manner until no more frequent subspaces can be found. Finally, we adopt a greedy algorithm to
summarize all frequent subspaces found and select the significant ones.

Since the proposed method uses the joinable subspaces to find the frequent subspaces in
a DFS manner, the proposed method can localize the search space in a small number of point
groups. Thus, the proposed method is more efficient than FIRES and DUSC. Moreover, since
the proposed method first finds all frequent subspaces and then uses the subspace summarization
approach to select the significant ones. It can balance both quality and coverage simultaneously
by considering all frequent subspaces. The experimental results show that the proposed method
is efficient and scalable, has better quality and coverage than DUSC, and has better quality than
FIRES in the real datasets.

In addition to the applications of the real datasets shown in Section 4.2, the proposed
method can be also applied to the following potential areas such as customer segmentation,
customer profiling, stock portfolio selection, trend analysis, spam mail filtering, text-mining,
and bioinformatics. However, the proposed method still has some limitations. First, we use a
simple score function to compute the score for each frequent subspace. Thus, it is worth further
study on how to provide a better score function for a complex system. Finally, it is worth
developing an algorithm which embeds the constraint of score computation in the process of

mining frequent subspaces.

6. ACKNOWLEDGEMENTS

The authors are grateful to the anonymous referees for their helpful comments and
suggestions. This research was supported in part by the National Science Council of Republic of
China under Grant No. NSC 97-2410-H-002-126-MY 3.

48

&ENEESR FTts FH

10.

I1.

12.

13.

REFERENCE

Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., and Park, J.S. “Fast algorithms for
projected clustering,” In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1999, pp. 61-72.

Aggarwal, C.C., and Yu, P.S. “Finding generalized projected clusters in highdimensional
spaces,” In Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2000, pp. 70-81.

Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. “Automatic subspace clustering
of high dimensional data,” In Proceedings of ACM SIGMOD International Conference on
Management of Data, 1998, pp. 94-105.

Assent, 1., Krieger, R., Miiller, E., and Seidl, T. “DUSC: Dimensionality unbiased
subspace clustering,” In Proceedings of the Seventh IEEE International Conference on
Data Mining, 2007, pp. 409-414.

Cheng, C.H., Fu, AW.C., and Zhang, Y. “Entropy-based subspace clustering for mining
numerical data,” In Proceedings of the fifth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1999, pp. 84-93.

Glomba, M., and Markowska-Kaczmar, U. “IBUSCA: A grid-based bottom-up subspace
clustering algorithm,” In Proceedings of the Sixth International Conference on Intelligent
Systems Design and Application, 2006, pp. 671-676.

Goil, S., Nagesh, H., and Choudhary, A. Mafia: Efficient and scalable subspace clustering
for very large data sets, Technical Report CPDC-TR-9906-010, Northwestern University,
1999.

Kriegel, H.P., Kroger, P., Renz, M., and Wurst, S. “A genetic framework for efficient
subspace clustering of high-dimensional data,” In Proceedings of the Fifth IEEE
International Conference on Data Mining, 2005, pp. 250-257.

Michael, S. Introduction to the Theory of Computation, PWS Publishing Company, 1996.
Newman, D., Hettich, S., Blake, C., and Merz, C. UCI repository of MLDBs, 1998 (available
online at http://archive.ics.uci.edu/ml/).

Lu, Y., Tian, Q., Liu, F,, Sanchez, M., and Wang, Y. “Interactive semisupervised learning
for microarray analysis,” IEEE/ACM Transactions on Computational biology and
bioinformatics (4:2), 2007, pp. 190-203.

Parsons, L., Haque, E., Liu, H. “Subspace clustering for high dimensional data: A
review,” ACM SIGKDD Explorations Newsletter (6:1), 2004, pp. 90-105.

Patrikainen, A., and Meila, M. “Comparing subspace clusterings,” IEEE Transactions on
Knowledge and Data Engineering (18:7), July 2006, pp. 902-916.

Mining Significant Subspaces 49

14. Sequeira, K., and Zaki, M.SCHISM: A new approach for interesting subspace mining,” In
Proceedings of the Fourth IEEE International Conference on Data Mining, 2004, pp. 186-
193.

15. Woo, K.G., and Lee, J.H. FINDIT: A fast and intelligent subspace clustering algorithm
using dimension voting, PhD thesis, Korea Advanced Institute of Science and Technology,
Taejon, Korea, 2002.

16. Yang, J., Wang, W., Wang, H., and Yu, P. d-clusters: Capturing subspace correlation
in a large data set,” In Proceedings of eighteenth International Conference on Data
Engineering, 2002, pp. 517-528.

50

ENEESR FTts FH

