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Abstract
Decisions for real-world problems are not always made precisely since the input 

data are themselves imprecise. This study presents a rough-fuzzy hybridization method to 
generate fuzzy if-then rules automatically from a diagnosis dataset with quantitative data 
values, based on fuzzy set and rough set theory. The proposed method consists of four 
stages: preprocessing inputs with fuzzy linguistic representation; rough set theory in finding 
notable reducts; candidate fuzzy if-then rules generation by data summarization, and truth 
evaluation the effectiveness of fuzzy if-then rules. The main contributions of the proposed 
method are the capability of fuzzy linguistic representation of the if-then rules, finding 
concise fuzzy if-then rules from diagnosis dataset, and tolerance of imprecise data.

Key words: �Knowledge discovery in databases, fuzzy if-then rules, soft computing, fuzzy 
sets, rough sets
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摘要

在真實世界處理決策問題時，由於輸入資料本身即存在有不確定性，所以要做出明

確的決策具有相當的困難。以模糊集合與概略集合理論為基礎，本研究提出了一個＂概

略-模糊混合的方法＂，以從具有量化數據的診斷資料集合中，自動的產生模糊IF-THEN
規則。所提出的方法包含有四個階段：輸入資料前處理使資料能呈現模糊口語化的語

意、以概略集合理論找出顯著的＂屬性縮減＂、以資料彙總技術產生候選的IF-THEN規
則、以及以真實值評估IF-THEN規則的有效性。本研究主要的貢獻，在於提出的方法所
產生之IF-THEN規則具有口語化語意呈現的能力、能於診斷資料集合中找出精簡的模糊
IF-THEN規則，以及具有不確定資料容忍的能力。

關鍵字：�由資料庫中發掘知識、模糊 IF-THEN規則、軟式計算、模糊集合、概略
集合
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1. INTRODUCTION

Knowledge discovery in databases (KDD) has drawn the interest of the machine learning 
community. KDD generally involves statistical and data mining techniques to extract valuable 
knowledge in databases. Most KDD systems are designed to extract knowledge in a precise 
manner, rather than to provide a compact view that describes subsets of the database. Moreover, 
the knowledge representation is often uninformative for the user.  

Fuzzy set theory, rough set theory, neural network and genetic algorithm are soft computing 
techniques widely used in the data mining step of the KDD process. Fuzzy set theory provides 
a natural framework for handling uncertainty. Rough set theory and neural network are used in 
rule generation and classification. Genetic algorithms are involved in various optimization and 
search processes. Besides, soft computing is a union methodology that works synergistically and 
provides flexible information processing capability for handling real-life ambiguous situations. 
Extending the relational databases to express knowledge, several studies (Batyrshin 2004; Bosc 
et al. 1999; Cubero et al. 1999; Jang 1993; Karr & Gentry 1993; Sugeno & Yasukawa 1993; 
Takagi & Hayashi 1991)  have combined the ability of soft computing techniques with machine 
learning to represent and manage imprecise data together with the acceptable capacities for 
learning fuzzy if-then rules. Thus, fuzzy if-then rules can be generated from the fuzzy relations 
using linguistic representation. 

Real-world data often contain imperfect information, while uncertainties, impreciseness 
and missing values are co-exist. The analysis of real-world data thus requires dealing with 
incomplete and inconsistent information, and manipulates various levels of data representation. 
However, soft computing techniques are based on quite strong assumptions. They cannot derive 
conclusions from incomplete knowledge, or manage inconsistent information. The idea of rough 
set was as a useful mathematical tool to deal with vague concepts and to represent ambiguity, 
vagueness and uncertainty. 

Rough set algorithms (Pawlak 1982) do not need membership functions and prior 
parameter settings. It can extract knowledge from the data itself by means of indiscernibility 
relations, and generally needs fewer calculations than that of other soft computing techniques. 
Decision rules extracted by rough set are concise and valuable, which can benefit experts by 
revealing hidden knowledge in the dataset. The limitation of traditional rough set theory is 
concerned with discrete data; quantitative valued had to be discretized for rough set algorithms, 
which may result in some loss of information. 

Many researchers proposed the hybridization of fuzzy set and rough set (Cock et al. 2007; 
Jensen & Shen 2004; Morsi & Yakout 1998; Qin & Pei 2005; Radzikowska & Kerre 2002). By 
these approaches, the comparison among objects turned from elements'  indistinguishability 
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into their similarity, and the similarity represented by a fuzzy equivalence relation. As a result, 
objects are categorized into classes with approximate boundaries based on their similarity to one 
another, and allowing an object belonging with various degrees to more than one class. But in 
traditional fuzzy rough set theory, fuzzy rough set theory involves only one fuzzy equivalence 
relation. In this study, we proposed a method that can model several similarity classes at the 
same time.

This study concentrates on automatically extracting the relevant fuzzy if-then rules in a 
dataset using fuzzy set and rough set theory. As depicted in Fig. 1, a four-stage rough-fuzzy 
hybridization process for learning fuzzy if-then rules in datasets was proposed. In the first stage, 
each input variable with a quantitative domain is automatically transformed into overlapping 
linguistic property sets, generating a fuzzy granulation of the feature space which contains 
granules with ill-defined boundaries. The linguistically terms were modeled by trapezoidal 
fuzzy sets defined in the appropriate attribute domains. Next, rough set theory was used to find 
notable reducts which model corresponding linguistic summaries in databases. Consequently, 
the linguistic summaries were used to generate candidate fuzzy if-then rules using the data 
summarization paradigm. Finally, a rule evaluation method was proposed to determine the 
effectiveness of the resulting fuzzy if-then rules by the fuzzy truth value judgment standards. 

As stated, the core task of this four-stage process is the extraction/evaluation of fuzzy 
if-then rules. The extracted rules for the conventional rule generation approaches, such as 
association rule and classification rule, are usually very large, to the present of a huge proportion 
of redundant rules conveying the same information. By contrast with the conventional rule 
generation approaches, this study proposes a rough-fuzzy hybridization method (Cubero et 
al. 1999; Hsieh 2004), which generalizes concise fuzzy if-then rules. This method can be 
considered when the subsets of a database satisfy the linguistic summaries, then the linguistic 
summaries represent a set of fuzzy if-then rules explaining the subsets of data.

The rest of this study is organized as follows. Section 2 describes the analytical 
methodology of this study, and gives an overview of the linguistic summarization of databases 
and its application in extracting fuzzy if-then rules. Section 3 describes in detail the proposed 
rough-fuzzy hybridization method in constructing fuzzy rule-base, and shows an example of 
the ability to extract fuzzy if-then rules in a fuzzy database exhibiting linguistic summaries. The 
final section draws conclusions.



Rule Extraction Using Soft-Computing Techniques with Fuzzy Linguistic Representation 229

Figure 1：A four-stage process for generating fuzzy if-then rules

2. THE FUNDAMENTALS OF THE ROUGH-
FUZZY HYBRIDIZATION APPROACH

2.1 New fuzzy rough sets

In real-world data analysis, uncertainty is possible joined into databases. Decisions in many 
knowledge-intensive applications usually involve various forms of uncertainty. The values 
of attributes in databases may be symbolic or real-valued, and linguistic quantifiers (i.e. very, 
many, almost, etc.) are often used for conveying vague information in natural language (De & 
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Krishna 2004; Yeung et al. 2005). 
Pawlak's rough set theory (Pawlak 1982; Pawlak 1991) is a method for discovering 

knowledge under uncertainty environment, the information systems of rough set theory contain 
crisp data, and the equivalence relation is a key and primitive notion. However, the equivalence 
relation seems to be a very strict condition that might limit the application domain of the rough 
set theory. To solve this problem, several authors have generalized the notion of approximation 
operators by using non-equivalence binary relations (Yao 1998b; Yao & Lin 1996). Alternatively, 
a fuzzy similarity relation was used to replace the equivalence relation. This is result a deviation 
of rough set theory called fuzzy rough sets (Dubois & Prade 1990).

Fuzzy rough sets contained a pair of fuzzy rough approximations of a fuzzy set by 
using the notions of the greatest t-norm(min), t-conorm(max), and a fuzzy similarity relation. 
Following Dubois and Prade' work, Morsi and Yakout (1998) developed a generalized definition 
of fuzzy rough sets by using a lower semi-continuous t-norm*, R-implication, and a fuzzy 
*-similarity relation. The axiomatic characterization of the fuzzy rough approximation operators 
was presented. Radzikowska and Kerre (2002) presented a general approach to fuzzy rough sets 
with reference to a t-norm, a special fuzzy implication, and a fuzzy similarity relation.

Besides, more researchers proposed the hybridization of fuzzy set and rough set (Cock 
et al. 2007; Jensen & Shen 2004; Morsi & Yakout 1998; Qin & Pei 2005; Radzikowska & 
Kerre 2002). By these approaches, the comparison among objects turned from elements´ 
indistinguishability into their similarity, and the similarity represented by a fuzzy equivalence 
relation. As a result, objects are categorized into classes with approximate boundaries based on 
their similarity to one another, and allowing an object belonging with various degrees to more 
than one class.  In these approaches, uncertainty is linked to information through the concept of 
granular structures (Zadeh 2005), and information is represented as a generalized constraint that 
is drawn from fuzzy set theory and fuzzy logic. 

However, until now, most researches on rough sets and fuzzy rough sets are focused on the 
same universe, that is, the binary relations used in rough sets are defined on the same universe 
(Pawlak 1982; Pawlak 1991; Yao 1998a). Zhang and Wu (2000) proposed the approximation 
operators between different universes and constructed the rough set model using random sets. 
In this study, we followed the concept of granular structures (Liu et al. 2006) and proposed a 
method that can model several fuzzy similarity classes at the same time, and the approximation 
operators are between different universes of a new fuzzy rough sets. 

2.2 Fuzzy queries involving linguistic summaries as rules mining tool

To learn rules from examples, fuzzy queries involving linguistic summaries (Bosc et al. 
1999; Lee & Kim 1997) can be regarded as part of the data mining technique based on the 
association rules. The quantitative/categorical interface provided by fuzzy set theory, and 
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reducts provided by rough set theory, are considered as fundamental to linguistic summary. 
The general form of a linguistic summary is“Q X objects in DB are S＂, where Q denotes 
the fuzzy linguistic quantifier, X denotes a class of objects, DB denotes the database, and S 
denotes a property of the class or a linguistic summary that applies to the class quantified by 
Q. For example, a fuzzy rule“tall people in DB are heavy＂can be justified using the validity 
of the linguistic summary“most tall people in DB are heavy＂. Rasmussen and Yager (1999) 
proposed a SummarySQL for computing linguistic summaries with truth values as fuzzy 
predicates, which can be regarded as a method for generating fuzzy if-then rules in databases.

Hence, the discovery of fuzzy if-then rules is closely related to the validation of the 
corresponding linguistic summaries. However, notable linguistic summaries are difficult to find 
in a database. This study proposes a rough-fuzzy hybridization method for generating fuzzy if-
then rules in databases. The candidate linguistic summaries were built by the reducts through 
rough set theory, and the fuzzy if-then rules were generated through the linguistic summary 
by the reducts. That is, the reducts infer the fuzzy if-then rules using the linguistic summary, 
enabling the database to be partitioned with less data than crisp summary for generating fuzzy 
if-then rules. Furthermore, the linguistic representation of data can handle vague, uncertain 
or imprecise information, as well as improve the accuracy and robustness of the linguistic 
summary construction process.

This study focuses on generating fuzzy if-then rules for the classification problem. For each 
fuzzy if-then rule, when the linguistic summaries in the antecedent are given, the consequent 
class membership and degree of truth can be determined. 

To concretize the presentation, an example of the linguistic summary method used in 
generating fuzzy if-then rules is presented. Assume a classification problem with two features 
(Height, Weight), where Height={short, medium, tall} and Weight={light, normal, heavy}. As 
depicted in Fig. 2, the linguistic variables are described by two trapezoidal fuzzy sets. In Table 
1, DB denotes a database with quantitative values, and DB1 denotes a fuzzy database after 
the linguistic transformation. Moreover, DB2 and  denote two fuzzy databases with different 
threshold values associated with“Height＂and“Weight＂. Herein, if most data exhibit 
such linguistic summaries, then the fuzzy if-then rules can be validated by the corresponding 
linguistic summaries. For example, if the rule's antecedent is described by Height × Weight, 
then the linguistic expression, IF {Height=(tall,1)} AND Weight={(heavy,0.9) ＜ (heavy,1)} 
THEN Class=1, defines roughly the class membership of an object.
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Table 1：The adult database

Figure 2：The linguistic variables “Height” and “Weight”
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2DB  denote two fuzzy databases with different 
threshold values associated with “Height” and “Weight”. Herein, if most data exhibit 
such linguistic summaries, then the fuzzy if-then rules can be validated by the 
corresponding linguistic summaries. For example, if the rule’s antecedent is described 
by Height  Weight, then the linguistic expression, IF {Height=(tall,1)} AND 
Weight={(heavy,0.9) (heavy,1)} THEN Class=1, defines roughly the class 
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Table 1. The adult database 
DB (database with quantitative 

attributes) DB1 (fuzzy database) 

Height Weight Class Height Weight Class
177 83 0 (medium,0.8) (normal,0.7) 0 
170 75 0 (medium,1) (normal,1) 0 
170 83 0 (medium,1) (normal,0.7) 0 
185 89 1 (tall,1) (heavy,0.9) 1 
185 90 1 (tall,1) (heavy,1) 1 
… … … … … … 

DB2, height = 1.0 '
2DB , height = 0.8 

Height Weight Class Height Weight Class

(medium, 0.8) (normal, 0.7) 0 (medium, 0.8) (normal,0.7) 
(normal,1) 0

(medium, 1) (normal, 1) 
(normal, 0.7) 0    

(tall, 1) (heavy,0.9) 
(heavy, 1) 1 (tall, 1) (heavy,0.9) 

(heavy,1) 1

… … … … … … 
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Figure 2. The linguistic variables “Height” and “Weight” 

3. ASSESSING SOFT COMPUTING TECHNIQUES FOR 
GENERATING FUZZY IF-THEN RULES 

3.1 The experimental dataset 

The experimental dataset used in this study is a breast cancer diagnosis database 
obtained from the UCI machine learning repository at 
http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/. The Wisconsin 
diagnostic breast cancer (WDBC) dataset was collected at different periods of time 
with different characteristic of attributes. The WDBC base dataset consists of ten 
attributes for the cancer cell nuclear, namely radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave points, symmetry and fractal dimension. 
The data values of each attribute are quantitative. The mean, worst, and standard error 
of each attribute were computed from the base dataset, resulting in a total of thirty 
attributes. In this study, we only considered the mean values in the learning process. 
Besides, each sample was associated with a diagnosis class label, either “benign” or 
“malignant”. However, the diagnostics of this dataset did not provide additional 
information about the degree of benignity or malignancy. The dataset include 357 
benign examples and 212 malignant examples. The classification problem is to learn 
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3. ASSESSING SOFT COMPUTING
TECHNIQUES FOR GENERATING

FUZZY IF-THEN RULES

3.1 The experimental dataset

The experimental dataset used in this study is a breast cancer diagnosis database obtained 
from the UCI machine learning repository at http://www.ics.uci.edu/~mlearn/databases/breast-
cancer-wisconsin/. The Wisconsin diagnostic breast cancer (WDBC) dataset was collected at 
different periods of time with different characteristic of attributes. The WDBC base dataset 
consists of ten attributes for the cancer cell nuclear, namely radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave points, symmetry and fractal dimension. The data 
values of each attribute are quantitative. The mean, worst, and standard error of each attribute 
were computed from the base dataset, resulting in a total of thirty attributes. In this study, we 
only considered the mean values in the learning process. Besides, each sample was associated 
with a diagnosis class label, either“benign＂or“malignant＂. However, the diagnostics of this 
dataset did not provide additional information about the degree of benignity or malignancy. The 
dataset include 357 benign examples and 212 malignant examples. The classification problem 
is to learn rules from benign or malignant examples from the physical attributes of cell given in 
the dataset. 

Several studies are based on this dataset. Peña-Reyes and Sipper (1999) proposed a fuzzy-
genetic hybrid approach to produce a fuzzy rule-based diagnostic system, and later used fuzzy 
modeling and cooperative co-evolutionally techniques (Peña-Reyes & Sipper 2001) to predicate 
the class membership of examples. Setiono (2000) proposed a rule extraction technique to 
generate concise and accurate classification rules in a trained neural network. Tan et al. (2003) 
proposed a two-phase hybrid evolutionary classification technique to extract classification rules 
to be applied in clinical practice for better understanding and prevention of unwanted medical 
events. Chou et al. (2004) used neural network and MARS techniques to discover the breast 
cancer pattern. 

Among these approaches, even with high classification accuracy, the diagnostic decisions 
are black boxes and the extracted knowledge is difficult to understand. Hence, a rough-fuzzy 
hybridization process could be developed to obtain informative and interpretable fuzzy if-then 
rules in databases. 
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3.2 Automatically transform quantitative data values into linguistic terms

Learning rules from examples is an active research topic in machine learning. However, 
most algorithms for learning rules from examples only accept categorical values, or sharp 
divide quantitative values into intervals. For example, the algorithm proposed in (Srikant & 
Agrawal 1996) initially partitions the quantitative attribute domain into small intervals and 
merges adjacent intervals into a larger interval, such that the combined intervals have sufficient 
supports. Then, the original attribute values are replaced by attribute-interval pairs, and the 
quantitative problem can be transformed into a Boolean one. 

However, the sharp division of quantitative values either ignores or over-emphasizes the 
elements near the interval boundary during data mining. For example, the interval method may 
classify a person as“young＂if age under 30 and“old＂if age over 30, obviously does not 
correspond to human perceptions of“young＂and “old＂. Furthermore, sharp divisions do 
not easily distinguish the degree of membership. For example, ages of 60 and 80 might both be 
classified as“old＂. However, people intuitively know that 80 is much older than 60. Fuzzy set 
theory can be used to solve this problem. 

Kuck et al. (1998) proposed a fuzzy rule learning algorithm using pre-defined fuzzy sets 
as input data. Although such a fuzzy rule learning algorithm can solve the problem introduced 
by sharp division, it has some other problems. First, since the fuzzy sets are pre-defined, the 
interval definition for the categorical value is subjective. Second, such a transformation seems 
to be unnatural because the quantitative values, unlike categorical values, have a linear order. 
Moreover, the categorical values may have overlapping linguistic meanings which cannot be 
manipulated in the learning process. Shape division is also unintuitive with respect to human 
perception. To overcome these problems, this study investigates whether the intervals can be 
defined automatically from the dataset itself, rather than only by domain experts.

In this study, fuzzy set theory was employed for linguistic representation of quantitative 
data, thereby producing a fuzzy granulated of the attribute domain. A self-organizing map (SOM) 
algorithm was used to obtain k midpoints of the granular feature space from each quantitative 
attribute domain, following by the judgment of domain experts. Next, using fuzzy linguistic 
representation technique, each attribute domain was characterized as a trapezoidal fuzzy set 
with individually linguistic terms. The transformed terms are more closely than the linguistic 
meaning of quantitative data. Moreover, the extracted fuzzy if-then rules can be represented 
the learned knowledge in terms of human thinking, and tolerated imprecise information more 
robustly. 

The steps for automatically finding fuzzy sets from a given dataset are described herein. 
Assume that the domain of a quantitative attribute ranges from v1 to v2, and {m1, m2,…, 
mk} denote the k midpoints obtained by the SOM algorithm. Using these k midpoints, k/2+1 
linguistic terms or membership functions can be determined for a trapezoidal fuzzy set. The first 
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membership function is computed as:
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For example, Radius is a quantitative attribute from the WDBC dataset. The 
domain of Radius ranges from 6.981 to 28.11. Four midpoints, (10.984, 14.084, 18.76, 
23.39), were obtained using the SOM algorithm. As depicted in Fig. 3, a trapezoidal 
fuzzy set was obtained with three membership functions corresponding to the 
linguistic terms Low, Medium, and High. These linguistic terms were modeled by 
three membership functions defined in the appropriate attribute domains. If 
Radius={12} is a quantitative value, then it can be automatically transformed to a 
trapezoidal fuzzy set, {(Low,0.67), (Medium,0.33), (High,0)}, which signifies that the 
value of Radius can be either (Low,0.67), (Medium,0.33) or (High,0). This datum is a 
fuzzy information with overlapped fuzzy similarity classes. 

As suggested by Medina et al. (Medina et al. 1995) and Cubero et al. (Cubero et al. 
1999), an ad hoc database system is not necessary built to store fuzzy information. A 
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knowledge in terms of human thinking, and tolerated imprecise information more 
robustly.

 The steps for automatically finding fuzzy sets from a given dataset are described 
herein. Assume that the domain of a quantitative attribute ranges from v1 to v2, and 
{m1, m2,…,mk} denote the k midpoints obtained by the SOM algorithm. Using these k
midpoints, k/2 1 linguistic terms or membership functions can be determined for a 
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For example, Radius is a quantitative attribute from the WDBC dataset. The 
domain of Radius ranges from 6.981 to 28.11. Four midpoints, (10.984, 14.084, 18.76, 
23.39), were obtained using the SOM algorithm. As depicted in Fig. 3, a trapezoidal 
fuzzy set was obtained with three membership functions corresponding to the 
linguistic terms Low, Medium, and High. These linguistic terms were modeled by 
three membership functions defined in the appropriate attribute domains. If 
Radius={12} is a quantitative value, then it can be automatically transformed to a 
trapezoidal fuzzy set, {(Low,0.67), (Medium,0.33), (High,0)}, which signifies that the 
value of Radius can be either (Low,0.67), (Medium,0.33) or (High,0). This datum is a 
fuzzy information with overlapped fuzzy similarity classes. 

As suggested by Medina et al. (Medina et al. 1995) and Cubero et al. (Cubero et al. 
1999), an ad hoc database system is not necessary built to store fuzzy information. A 
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obtained using the SOM algorithm. As depicted in Fig. 3, a trapezoidal fuzzy set was obtained 
with three membership functions corresponding to the linguistic terms Low, Medium, and High. 
These linguistic terms were modeled by three membership functions defined in the appropriate 
attribute domains. If Radius={12} is a quantitative value, then it can be automatically 
transformed to a trapezoidal fuzzy set, {(Low,0.67), (Medium,0.33), (High,0)}, which signifies 
that the value of Radius can be either (Low,0.67), (Medium,0.33) or (High,0). This datum is a 
fuzzy information with overlapped fuzzy similarity classes.

As suggested by Medina et al. (1995) and Cubero et al. (1999), an ad hoc database system 
is not necessary built to store fuzzy information. A general relational database management 
system with special relations and dictionaries can be constructed to manage fuzzy information, 
thus enabling efficient data management.
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Figure 3：The trapezoidal fuzzy set of Radius

3.3 Rough set theory for finding candidate linguistic summaries

Data summarization is a knowledge discovery technique providing the user with 
comprehensive information for grasping the essence from a large amount of examples in a 
database. Fuzzy set theory works well for data summarization in real-world application, and the 
generalized partition of tuples are as a representational form of a linguistic summary including 
fuzzy concepts. Since the interpretation and exploration of linguistic summaries are the main 
goals of data summarization, the reducts provided by the rough set theory could be served as the 
candidate linguistic summaries to extract fuzzy if-then rules.

From the viewpoint of data summarization, fuzzy query involving linguistic summaries 
are a useful utility, since they allow one to express relationship among attributes in the form of 
fuzzy if-then rules which are valid on a given subset of examples in a database. For example, 
Cubero et al. (1999) and Rasmussen and Yager (1999) defined linguistic summary in terms of 
fuzzy functional dependencies and showed how fuzzy rules can be extracted from a database. 
Bosc et al. (1999) proposed a data mining algorithm to extract fuzzy functional dependencies 
using gradual rules. 
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Since rough set theory is focused on the ambiguity caused by limited discernibility 
of objects in the domain of discourse, therefore, this study employs rough set theory to 
find candidate linguistic summaries. The core of rough set theory is finding reducts. A 
reduct contains a clump of objects in the universal of discourse drawn together by the 
indistinguishability relation. Hence, rough set theory can be employed to reduce the data by 
identifying indistinguishability classes through indistinguishability relation. The reduction step 
in rough set evolutional processes keeps only those attributes which preserve the indiscernibility 
relation. Therefore, minimal subsets of attributes that induce the partitions on the same target 
attributes with higher support are concerned. In other words, the essence of information remains 
intact, and superfluous attributes are removed. The remaining sets of attributes, called reducts, 
represent the fundamental integrity constraint of the database. 

However, rough set theory can only handle precise values. Therefore, the trapezoidal fuzzy 
sets were binalized according to their membership values. For example, the trapezoidal fuzzy set 
{(Low,0.8), (Medium,0.6), (High,0.3)} is binalized as “100＂. Fig. 4 shows the transformed 
WDBC dataset and the extracted reducts. By applying rough set theory, several reducts can be 
generated from the experimental dataset. 

3.4 Using fuzzy truth value to evaluate the confidence of fuzzy if-then rules

For generating fuzzy if-then rules, fuzzy queries involving linguistic summaries are 
derived as linguistically quantified propositions with a truth value representing the effectiveness 
of the generated fuzzy if-then rules. Generally, each fuzzy if-then rule often involves several 
linguistically quantified propositions, indicating a search problem for determining the most 
appropriate combinational linguistic summaries from all possible combinations of attributes. For 
this purpose, Kacprzyk et al. (1989) developed a fuzzy query language for interactive linguistic 
summarization using natural terms and comprehensible quantifiers. Rasmussen and Yager 
(1999) defined searching processes for fuzzy and gradual functional dependencies in the light 
of linguistic summaries which can also be used for knowledge discovery. In these approaches, 
the interesting linguistic summaries are difficult to generate and generally user interaction is 
required. 

As stated by Yager (1996), the linguistic summary is a linguistically quantified proposition 
containing meta-knowledge about a set of particular objects, and is useful in knowledge 
discovery. This study aims to consider the notable subsets of tuples in the fuzzy relational 
database, and to construct linguistic summaries in which attribute values are fuzzy linguistic 
labels describing each subset of tuples. Thus, for each notable linguistic summary “Q X objects 
in DB are S＂, the attributes S were determined using rough set theory to the class of objects X, 
and the validation process is to test the truth of the association between the X and S with respect 
to the quantifier, Q. Fig. 5 shows an example of two fuzzy if-then rules generated by linguistic 
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summary. Finally, the truth value of a linguistic summary is a number in the unit interval, such 
that a value close to one indicates that the proposed linguistic summary is likely to be truthful. 

Figure 4：The transformed WDBC dataset and the extracted reducts
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Figure 5：Fuzzy if-then rules generated by linguistic summary

The fuzzy logic based calculus provides the interpreting and validating of the truth 
statement involving complex linguistic quantifiers, such as“many＂,“some＂and“few＂. 
Let“

14

Malignant examplesBenign examples

Lo
w

   
   

   
   

   
  N

or
m

al
   

   
   

   
   

  H
ig

h

Low                 Normal                 High

IF A1(N) and A2(N) THEN Malignant 

IF A1(L) and A2(L) THEN Benign

Figure 5. Fuzzy if-then rules generated by linguistic summary

The fuzzy logic based calculus provides the interpreting and validating of the truth 
statement involving complex linguistic quantifiers, such as “many”, “some” and 
“few”. Let “Q {t1,…,tn} are S” denotes a linguistically quantified statement, and let 
{t1,…,tn} denotes a set of fuzzy tuples in the fuzzy database, DB. The procedure for 
determining the truth value of a linguistically quantified statement is as follows. If the 
summary S involves an attribute A, and ti denotes a tuple that satisfies the summary S,
then the membership value of ti to S is given by: 

( ) max ( , )i EQ k kk
S t a b , for all ak ti[A], bk S,

where S(ti) denotes the degree to which ti satisfies the summary S, and the function 
( , ) 0EQ k ka b  if and only if ( ) ( ( ) 0)k k k k ka b a b b ;

( , ) 1 ( ) ( )EQ k k k ka b a b  if and only if ( ( ) 0)k k ka b b . Then, the 
individual truth value of “{t1,…,tn} are S” for an attribute A over DB is computed as:  

Truth({t1,…,tn} are S) =
1

1 ( )n
ii

S t
n

.

 Moreover, when the linguistic summaries are distributed over m attributes with 
ANDed conditions, that is, S = S1  … Sm, then the total truth value Truth({t1,…,tn}
are S) = 1 1min ( ({ ,..., } are )m

j n jTruth t t S . When the linguistic summaries are distributed 
over m attributes with ORed conditions, that is, S = S1  … Sm, then the total truth 
value Truth({t1,…,tn} are S) = 1 1max ( ({ ,..., } are )m

j n jTruth t t S . Finally, T = 
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The fuzzy logic based calculus provides the interpreting and validating of the truth 
statement involving complex linguistic quantifiers, such as “many”, “some” and 
“few”. Let “Q {t1,…,tn} are S” denotes a linguistically quantified statement, and let 
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Q(Truth({t1,…,tn} are S)) denotes the truth value of the linguistically quantified 
statement “Q {t1,…,tn} are S” to the fuzzy quantifier Q in agreement. Fig. 5 shows the 
procedure in obtaining the truth value of the linguistic summaries. 

For example, a notable reduct, {Area, Concave_points}, was determined using the 
rough set theory. The fuzzy quantifier sets up as “some”, which is defined as the 
membership function ( 0.38) / 0.08*( 0.38) / 0.08( ) 1 x x

some x e . Then the linguistically 
quantified statement for validating the fuzzy if-then rule is given by:

“Some of the benign breast’s cells have low Area and low Concave_points.”

 The method of computing the individual truth value for the attribute Area is 
described as follows. Let the linguistic summary, S1(low Area)=(Low:1, Medium:0, 
High:0) and a tuple ti =(Low:0.8, Medium:0.1, High:0). Then, the membership value 
of ti to S1 is given by S(t1)= max(0.8,0,0). For n tuple {t1,…,tn}, the individual truth 

value “Truth({t1,…,tn} are S1” over DB is computed as 
1

1 ( )n
ii

S t
n

=0.437, where 

n=188. Similarly, for linguistic summary, S2(low Concave_points), the individual 
truth value “Truth({t1,…,tn} are S2” over DB is 0.473. Since the linguistic quantified 
statement is ANDed with linguistic summaries, the total truth value is 
min(0.437,0.473)=0.437. After applying the linguistic quantifier “some”, a fuzzy if-
then rule with truth is obtained in the following form: 

 IF Area is Low and Concave_points is Low THEN Breast_Cancer is benign, 0.602. 

 With the judgment standards of support and total truth value, Table 2 shows the 
fuzzy if-then rules generated by the proposed rough-fuzzy hybridization process. 
Suitable linguistic quantifier can be employed to interpret linguistic confidence. 
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Figure 5：The procedure for obtaining the truth value of the linguistic summaries

Table 2：The fuzzy if-then rules generated by the rough-fuzzy hybridization method

ID IF THEN Support Accuracy Total Truth Value

1 Area(Low) AND Concave_points(Low) benign 0.3304 100% 0.601

2 Perimeter(Low) AND Concave_points(Low) benign 0.2689 100% 0.852

3 Radius(Low) AND Concave_points(Low) benign 0.2742 100% 0.928

4
Perimeter(Low) AND Smoothness(Normal) 
AND Compactness(Normal)

benign 0.0580 100% 0.852

5
Area(Normal) AND Concavity(Normal) AND 
Symmetry(Low, Normal)

malignant 0.0053 100% 0.805

… … … …
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4. CONCLUSION

The extracted rules for the conventional association rule method are usually very large, to 
the present of a huge proportion of redundant rules conveying the same information. Many of 
the rules may contain redundant, irrelevant information or describe trivial knowledge. This study 
proposes a rough-fuzzy hybridization method for learning informative and concise fuzzy if-then 
rules from examples. The quantitative/categorical interface provided by fuzzy set theory is used 
for the linguistic representation of examples, and balances the expert perception and system 
automation. Besides, the reducts provided by rough set theory were found to be a useful tool for 
finding candidate linguistic summaries. Hence, the discovery of fuzzy if-then rules is similar to 
the validation of the corresponding linguistic summaries, and the generated fuzzy if-then rules 
are on the basis of equivalence relation to enhance its readability. Moreover, this study proposed 
to use fuzzy truth value to evaluate the confidence of fuzzy if-then rules. In contrast to the 
conventional rule mining method, the proposed method can handle imprecise information and 
improve the efficiency and robustness of the rule base construction process. Important future 
work is deployed the proposed method into real system.
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