資訊管理學報

廖文忠;許中川;
頁: 185-216
日期: 2012/01
摘要: 在許多應用領域,交易紀錄反映個人行為上的偏好或習慣,若將交易紀錄適當分群,即可將不同行為類型的個人分到不同群組。交易型資料通常有概念階層伴隨,概念階層反映所有可能交易項目之間的相關性,然而,概念階層卻被大多數的分群演算法忽略,因此,易將相似度高的交易資料分屬不同群組;除此,分群結果通常不易被使用者觀看。本論文目的在延伸自組映射圖探勘具概念階層的交易資料,我們稱之為SetSOM;SetSOM可將交易資料映射至二維平面上,同時保有交易資料在其資料空間上的拓樸關係且可被觀看。利用人造資料及實際蒐集的交易型資料,進行實驗發現,SetSOM無論在執行時間、視覺觀看品質、映射品質、及分群品質均高於其他自組映射圖的表現,包括SCM及SOM。
關鍵字: 交易型資料;自組映射圖;概念階層;交易型資料距離函數;概念樹;

延伸自組映射圖探勘交易型資料


Abstract: In many application domains, transactions are the records of personal activities. Transactions always reveal personal behavior customs, so clustering the transactional data can divide individuals into different segments. Transactional data are often accompanied with a concept hierarchy, which defines the relevancy among all of the possible items in transactional data. However, most of clustering methods in transactional data ignore the existing of the concept hierarchy. Owing to the lack of the relevancy provided by the concept hierarchy, clustering algorithms tend to separate some similar patterns into different clusters. Besides, their clustering results are not easy to be viewed by users. The purpose of this study is to propose an extended SOM model which can handle transactional data accompanied with a concept hierarchy. The new SOM model is named as SetSOM. It can project the transactional data into a two-dimensional map; in the meanwhile, the topological order of the transactional data can be preserved and visualized in the 2-D map. Experiments on synthetic and real datasets were conducted, and the results demonstrated the SetSOM outperforms other SOM models in execution time, and the qualities of visualization, mapping and clustering.
Keywords: transactional data;self-organizing map;concept hierarchy;distance function on transactions;concept tree;

瀏覽次數: 34393     下載次數: 4111

引用     導入Endnote