檢索結果(共2筆)


邱哲夫;王惠嘉;
頁: 1-24
日期: 2019/01
卷期: 26(1)
關鍵字: 自動化分群;元啟發式演算法;人工蜂群演算法;模範策略;
Keywords: automatic clustering;meta-heuristic clustering;artificial bee colony algorithm;model strategy;
摘要: 分群是一種資料探勘技術,它是一種非監督式的學習方法,透過相似度計算,將資料分成不同的群。在分群演算法中,啟發式分群在近年來漸漸受到重視,它指的是運用啟發式演算法或啟發式的概念解決分群問題。相較於目前的一些其方分群方法(如:k-means),啟發式分群似有較好...

引用     導入Endnote
李維平;李元傑;謝明勳;
頁: 25-43
日期: 2014/01
卷期: 21(1)
關鍵字: 人工蜂群演算法;最佳化演算法;演化式計算;
Keywords: Artificial Bee Colony Algorithm;Optimization Algorithm;Evolutionary Computation;
摘要: 人工蜂群演算法(Artificial Bee Colony)是學者Karaboga於2005年所提出之最佳化演算法,具有良好的穩定性、優秀的求解能力、控制參數少、計算簡潔及易於實現等優點,但也存在後期過早收斂、開發精度不佳等問題。因此,本研究提出一種新式的群中心改良策略,以改善人工蜂...

引用     導入Endnote