檢索結果(共2筆)


郝沛毅;龔千芬;張俊陽;蔣榮先;鄭詠恆;
頁: 495-535
日期: 2020/10
卷期: 27(4)
關鍵字: 事件嵌入;興趣點推薦;矩陣分解;深度學習;卷積神經網路;
Keywords: event embedding;POI recommendation;matrix factorization;deep learning;convolutional neural networks;
摘要: 基於位置的社群網路(LBSN)近來變得十分流行,這歸功於智慧手機的爆炸式增長,使得用戶可以輕鬆地執行LBSN程序。越來越多使用者在這些平台上與好友分享打卡資訊跟生活點滴。興趣點(POI)推薦系統是LBSN的核心服務,也是最近熱門的研究焦點。目前研究主要是分析用戶的打...

引用     導入Endnote
黃純敏;林重佑;黃進瑞;
頁: 423-447
日期: 2013/10
卷期: 20(4)
關鍵字: 學習向量量化;推薦系統;混合過濾;協同過濾;內容過濾;
Keywords: Learning Vector Quantization;Recommendation System;Hybrid Filtering;Collaborative Filtering;Content-based Filtering;
摘要: 內容過濾與協同過濾是經常用於提供個人化服務的技術,近年來則多偏向結合各種監督式學習的混合式過濾方式,並以三層或多層式網路架構產生推薦結果,然而其設計不易且有網路收斂效率低的問題。本研究以學習向量量化(Learning Vector Quantization;LVQ)簡約的兩層式網路...

引用     導入Endnote