檢索結果(共6筆)
胡志堅;陳昱安;
頁: 209-237
日期: 2024/04
卷期: 31(2)
關鍵字: 音樂風格分類;卷積神經網路;音樂資訊檢索;文字探勘;主題模型;
Keywords: Music genre classification;Convolutional neural network (CNN);Music information retrieval (MIR);Text mining;Topic model;
摘要: 資通訊科技的蓬勃發展,驅使眾多音樂愛好者透過音樂串流服務平台聆聽和分享音樂創作。然而,隨著音樂作品數量的增加,有效管理這些作品並提升音樂檢索效能,成為音樂數位典藏的重要課題。目前的音樂素材檢索和歸類,缺乏同時考量音樂風格及其創作之文化背景。因此,本研...
引用 導入Endnote
頁: 209-237
日期: 2024/04
卷期: 31(2)
關鍵字: 音樂風格分類;卷積神經網路;音樂資訊檢索;文字探勘;主題模型;
Keywords: Music genre classification;Convolutional neural network (CNN);Music information retrieval (MIR);Text mining;Topic model;
摘要: 資通訊科技的蓬勃發展,驅使眾多音樂愛好者透過音樂串流服務平台聆聽和分享音樂創作。然而,隨著音樂作品數量的增加,有效管理這些作品並提升音樂檢索效能,成為音樂數位典藏的重要課題。目前的音樂素材檢索和歸類,缺乏同時考量音樂風格及其創作之文化背景。因此,本研...
引用 導入Endnote
龔千芬;郝沛毅;
頁: 239-276
日期: 2024/04
卷期: 31(2)
關鍵字: 敗血症早期預測;深度學習;模糊支持向量機;醫學訊息學;生成對抗網路;
Keywords: : Sepsis early warning model;Deep learning;Fuzzy support vector machines;Medical informatics;Generative adversarial network;
摘要: 敗血症是一種可能導致死亡的嚴重疾病,根據世界衛生組織的統計,每年大 約有 600 萬人因為敗血症休克而死亡,死亡率高達 50%。敗血症發作的早期預 警和及早的干預治療,可以避免絕大多數的敗血症休克死亡的發生。人工智慧演 算法的蓬勃發展與重症監護病房的大量病患...
引用 導入Endnote
頁: 239-276
日期: 2024/04
卷期: 31(2)
關鍵字: 敗血症早期預測;深度學習;模糊支持向量機;醫學訊息學;生成對抗網路;
Keywords: : Sepsis early warning model;Deep learning;Fuzzy support vector machines;Medical informatics;Generative adversarial network;
摘要: 敗血症是一種可能導致死亡的嚴重疾病,根據世界衛生組織的統計,每年大 約有 600 萬人因為敗血症休克而死亡,死亡率高達 50%。敗血症發作的早期預 警和及早的干預治療,可以避免絕大多數的敗血症休克死亡的發生。人工智慧演 算法的蓬勃發展與重症監護病房的大量病患...
引用 導入Endnote
郝沛毅;龔千芬;
頁: 303-333
日期: 2022/10
卷期: 29(4)
關鍵字: 股價預測;模糊支持向量機;卷積神經網路;雙向長短期記憶體;注意 力機制;
Keywords: Stock prediction;Fuzzy support vector machine;Convolutional neural networks;bi-directional long short-term memory;Attention mechanism.;
摘要: 股價預測是橫跨金融與計算機科學領域的經典預測問題,由於成功預測股價 的潛在好處,它吸引一代又一代的學者與投資者從不同的角度、無數的學理、眾 多的投資策略和不同的實踐經驗來開發各種預測方法。股價預測的困難癥結點在 於影響股票漲跌的因素太多。股市波動通常...
引用 導入Endnote
頁: 303-333
日期: 2022/10
卷期: 29(4)
關鍵字: 股價預測;模糊支持向量機;卷積神經網路;雙向長短期記憶體;注意 力機制;
Keywords: Stock prediction;Fuzzy support vector machine;Convolutional neural networks;bi-directional long short-term memory;Attention mechanism.;
摘要: 股價預測是橫跨金融與計算機科學領域的經典預測問題,由於成功預測股價 的潛在好處,它吸引一代又一代的學者與投資者從不同的角度、無數的學理、眾 多的投資策略和不同的實踐經驗來開發各種預測方法。股價預測的困難癥結點在 於影響股票漲跌的因素太多。股市波動通常...
引用 導入Endnote
郝沛毅;龔千芬;張俊陽;蔣榮先;鄭詠恆;
頁: 495-535
日期: 2020/10
卷期: 27(4)
關鍵字: 事件嵌入;興趣點推薦;矩陣分解;深度學習;卷積神經網路;
Keywords: event embedding;POI recommendation;matrix factorization;deep learning;convolutional neural networks;
摘要: 基於位置的社群網路(LBSN)近來變得十分流行,這歸功於智慧手機的爆炸式增長,使得用戶可以輕鬆地執行LBSN程序。越來越多使用者在這些平台上與好友分享打卡資訊跟生活點滴。興趣點(POI)推薦系統是LBSN的核心服務,也是最近熱門的研究焦點。目前研究主要是分析用戶的打...
引用 導入Endnote
頁: 495-535
日期: 2020/10
卷期: 27(4)
關鍵字: 事件嵌入;興趣點推薦;矩陣分解;深度學習;卷積神經網路;
Keywords: event embedding;POI recommendation;matrix factorization;deep learning;convolutional neural networks;
摘要: 基於位置的社群網路(LBSN)近來變得十分流行,這歸功於智慧手機的爆炸式增長,使得用戶可以輕鬆地執行LBSN程序。越來越多使用者在這些平台上與好友分享打卡資訊跟生活點滴。興趣點(POI)推薦系統是LBSN的核心服務,也是最近熱門的研究焦點。目前研究主要是分析用戶的打...
引用 導入Endnote
林文暉;王平;吳保樺;周明勝;蔡東霖;蔡一郎;羅濟群;
頁: 465-494
日期: 2020/10
卷期: 27(4)
關鍵字: 網路入侵偵測;時間卷積神經網路;卷積神經網路;行為分析分類器;
Keywords: network intrusion detection;temporal convolutional networks;convolutional neuron networks;behavior analysis-based classifier;
摘要: 資安防護思維模式已逐步朝向整合度高且具有機械學習和認知運算(cognitive computing)技術的資安平台,透過將威脅資料篩濾增加威脅辨識、詮釋及預測精度,並藉由預測性分析(predictive analysis)可視化顯示提高對企業網路的即時安全監控與認知,以期協助企業降低資安...
引用 導入Endnote
頁: 465-494
日期: 2020/10
卷期: 27(4)
關鍵字: 網路入侵偵測;時間卷積神經網路;卷積神經網路;行為分析分類器;
Keywords: network intrusion detection;temporal convolutional networks;convolutional neuron networks;behavior analysis-based classifier;
摘要: 資安防護思維模式已逐步朝向整合度高且具有機械學習和認知運算(cognitive computing)技術的資安平台,透過將威脅資料篩濾增加威脅辨識、詮釋及預測精度,並藉由預測性分析(predictive analysis)可視化顯示提高對企業網路的即時安全監控與認知,以期協助企業降低資安...
引用 導入Endnote
許敦盛;李俊賢;
頁: 483-511
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標預測;球型複數模糊集;卷積神經網路;模糊推論系統;複合式機器學習演算法;
Keywords: multi-target prediction;sphere complex fuzzy sets;convolution neural networks;fuzzy inference system;hybrid learning;
摘要: 本研究針對時間序列提出多目標預測模型,結合卷積神經網路(Convolutional neural networks; CNN)與球型複數模糊神經系統(Sphere complex neural fuzzy system; SCNFS)。球型複數模糊集(Sphere complex fuzzy sets; SCFSs)可產生複數型態的歸屬程度,使SCNFS能根據...
引用 導入Endnote
頁: 483-511
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標預測;球型複數模糊集;卷積神經網路;模糊推論系統;複合式機器學習演算法;
Keywords: multi-target prediction;sphere complex fuzzy sets;convolution neural networks;fuzzy inference system;hybrid learning;
摘要: 本研究針對時間序列提出多目標預測模型,結合卷積神經網路(Convolutional neural networks; CNN)與球型複數模糊神經系統(Sphere complex neural fuzzy system; SCNFS)。球型複數模糊集(Sphere complex fuzzy sets; SCFSs)可產生複數型態的歸屬程度,使SCNFS能根據...
引用 導入Endnote