檢索結果(共7筆)
蕭國倫;劉柏辰;蔡泊均;
頁: 177-207
日期: 2024/04
卷期: 31(2)
關鍵字: 股票預測;深度學習;時間卷積網路(TCN);長短期記憶(LSTM);
Keywords: Stock prediction;Deep learning;Temporal Convolutional Network (TCN);Long Short-Term Memory(LSTM);
摘要: 股價預測一直是一個很棘手的問題,由於許多因素都會影響股價,因此簡單的模型無法準確預測。但添加太多的特徵將增加模型的複雜度,若能找到關鍵的特徵,模型的準確性將會更好。在股票預測領域中,許多使用長短期記憶(Long Short-Term Memory, LSTM)的研究顯示了良好的結...
引用 導入Endnote
頁: 177-207
日期: 2024/04
卷期: 31(2)
關鍵字: 股票預測;深度學習;時間卷積網路(TCN);長短期記憶(LSTM);
Keywords: Stock prediction;Deep learning;Temporal Convolutional Network (TCN);Long Short-Term Memory(LSTM);
摘要: 股價預測一直是一個很棘手的問題,由於許多因素都會影響股價,因此簡單的模型無法準確預測。但添加太多的特徵將增加模型的複雜度,若能找到關鍵的特徵,模型的準確性將會更好。在股票預測領域中,許多使用長短期記憶(Long Short-Term Memory, LSTM)的研究顯示了良好的結...
引用 導入Endnote
陳郁晴;李俊賢;
頁: 451-482
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標特徵挑選;人工神經網路;球型複數模糊集;球型複數神經模糊系統;混合式機器學習;
Keywords: multi-target feature selection;artificial neural networks (ANN);sphere complex fuzzy sets (SCFS);sphere complex neuro-fuzzy system (SCNFS);hybrid machine learning algorithm;
摘要: 時間序列資料的變化有著眾多變因,在預測上一直是具有挑戰性的問題和研究。最常應用於股市上的股價變化,從時間的推移中找出股票之間的關係,因此本篇設計一多目標時間序列預測模型,應用於股價預測。模型包含兩種模型架構,人工神經網路(Artificial nural networks; A...
引用 導入Endnote
頁: 451-482
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標特徵挑選;人工神經網路;球型複數模糊集;球型複數神經模糊系統;混合式機器學習;
Keywords: multi-target feature selection;artificial neural networks (ANN);sphere complex fuzzy sets (SCFS);sphere complex neuro-fuzzy system (SCNFS);hybrid machine learning algorithm;
摘要: 時間序列資料的變化有著眾多變因,在預測上一直是具有挑戰性的問題和研究。最常應用於股市上的股價變化,從時間的推移中找出股票之間的關係,因此本篇設計一多目標時間序列預測模型,應用於股價預測。模型包含兩種模型架構,人工神經網路(Artificial nural networks; A...
引用 導入Endnote
王慶豐;李俊賢;
頁: 413-450
日期: 2019/10
卷期: 26(4)
關鍵字: 複數模糊類神經;複數模糊集;特徵選取;粒子群最佳化演算法;遞迴最小平方法;
Keywords: complex neuro-fuzzy;complex fuzzy set;feature selection;particle swarm optimization;recursive least squares estimator;
摘要: 面對現今的國際化環境,投資已成為許多企業與人們的獲利方式,股票為此領域相當普遍的交易模式,但股價波動所牽涉層面廣泛,固然難以估計與預測,人工智慧中的深度學習即為當今預測的最佳工具之一。本研究提出一種新形態之複數模糊類神經分類模型(Complex Neuro-Fuzzy ...
引用 導入Endnote
頁: 413-450
日期: 2019/10
卷期: 26(4)
關鍵字: 複數模糊類神經;複數模糊集;特徵選取;粒子群最佳化演算法;遞迴最小平方法;
Keywords: complex neuro-fuzzy;complex fuzzy set;feature selection;particle swarm optimization;recursive least squares estimator;
摘要: 面對現今的國際化環境,投資已成為許多企業與人們的獲利方式,股票為此領域相當普遍的交易模式,但股價波動所牽涉層面廣泛,固然難以估計與預測,人工智慧中的深度學習即為當今預測的最佳工具之一。本研究提出一種新形態之複數模糊類神經分類模型(Complex Neuro-Fuzzy ...
引用 導入Endnote
許敦盛;李俊賢;
頁: 483-511
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標預測;球型複數模糊集;卷積神經網路;模糊推論系統;複合式機器學習演算法;
Keywords: multi-target prediction;sphere complex fuzzy sets;convolution neural networks;fuzzy inference system;hybrid learning;
摘要: 本研究針對時間序列提出多目標預測模型,結合卷積神經網路(Convolutional neural networks; CNN)與球型複數模糊神經系統(Sphere complex neural fuzzy system; SCNFS)。球型複數模糊集(Sphere complex fuzzy sets; SCFSs)可產生複數型態的歸屬程度,使SCNFS能根據...
引用 導入Endnote
頁: 483-511
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標預測;球型複數模糊集;卷積神經網路;模糊推論系統;複合式機器學習演算法;
Keywords: multi-target prediction;sphere complex fuzzy sets;convolution neural networks;fuzzy inference system;hybrid learning;
摘要: 本研究針對時間序列提出多目標預測模型,結合卷積神經網路(Convolutional neural networks; CNN)與球型複數模糊神經系統(Sphere complex neural fuzzy system; SCNFS)。球型複數模糊集(Sphere complex fuzzy sets; SCFSs)可產生複數型態的歸屬程度,使SCNFS能根據...
引用 導入Endnote
黃燕萍;許中川;
頁: 219-237
日期: 2007/10
卷期: 14(專)
關鍵字: 資料探勘;分群演算法;樣板探勘;時間序列分析;
Keywords: Data mining;Cluster analysis;Pattern discovery;Time series analysis;
摘要: 資料探勘是從大量資料中擷取隱藏、未知與潛在,但具有實用性的資訊分析方法。在資料探勘領域中,知識探勘的相關研究已有長足的進步。時間序列資料,包含大量未知與潛在的資訊。財務類型的資料庫中,通常存有大量的時間序列資料。過去時間序列相關研究以迴歸分析為主,傳...
引用 導入Endnote
頁: 219-237
日期: 2007/10
卷期: 14(專)
關鍵字: 資料探勘;分群演算法;樣板探勘;時間序列分析;
Keywords: Data mining;Cluster analysis;Pattern discovery;Time series analysis;
摘要: 資料探勘是從大量資料中擷取隱藏、未知與潛在,但具有實用性的資訊分析方法。在資料探勘領域中,知識探勘的相關研究已有長足的進步。時間序列資料,包含大量未知與潛在的資訊。財務類型的資料庫中,通常存有大量的時間序列資料。過去時間序列相關研究以迴歸分析為主,傳...
引用 導入Endnote
呂奇傑;李天行;陳學群;
頁: 161-183
日期: 2007/10
卷期: 14(4)
關鍵字: 獨立成份分析;支援向量迴歸;財務時間序列預測;股價指數;
Keywords: Independent component analysis;Support vector regression;Financial time series forecasting;Stock index;
摘要: 由於財務時間序列資料具有高頻率、雜訊、非定態與混沌等性質,因此在現今時間序列預測領域中,向來被認為是一極具挑戰性的應用領域。本研究提出一結合獨立成份分析(Independent component analysis, ICA)與支援向量迴歸(Support Vector Regression, SVR)之財務時間序列預...
引用 導入Endnote
頁: 161-183
日期: 2007/10
卷期: 14(4)
關鍵字: 獨立成份分析;支援向量迴歸;財務時間序列預測;股價指數;
Keywords: Independent component analysis;Support vector regression;Financial time series forecasting;Stock index;
摘要: 由於財務時間序列資料具有高頻率、雜訊、非定態與混沌等性質,因此在現今時間序列預測領域中,向來被認為是一極具挑戰性的應用領域。本研究提出一結合獨立成份分析(Independent component analysis, ICA)與支援向量迴歸(Support Vector Regression, SVR)之財務時間序列預...
引用 導入Endnote
陳安斌;許育嘉;
頁: 139-165
日期: 2004/01
卷期: 11(1)
關鍵字: 投資決策;小波轉換;神經網路;時間序列;股市預測;
Keywords: Investment Decision;Wavelet Transform;Neural Network;Time Series;Stock Forecasting;
摘要: 傳統時間序列的分析,通常都植基於機率與統計學,並假設資料的性質是定性(stationary)和線性(linear)的。但是當系統動態呈現高度非線性並伴隨著非定性(non-stationary)時,這些傳統模型的適用性及準確性可能無法滿足研究的需求。因此本研究提出了『小波神經網路多尺度解...
引用 導入Endnote
頁: 139-165
日期: 2004/01
卷期: 11(1)
關鍵字: 投資決策;小波轉換;神經網路;時間序列;股市預測;
Keywords: Investment Decision;Wavelet Transform;Neural Network;Time Series;Stock Forecasting;
摘要: 傳統時間序列的分析,通常都植基於機率與統計學,並假設資料的性質是定性(stationary)和線性(linear)的。但是當系統動態呈現高度非線性並伴隨著非定性(non-stationary)時,這些傳統模型的適用性及準確性可能無法滿足研究的需求。因此本研究提出了『小波神經網路多尺度解...
引用 導入Endnote