檢索結果(共2筆)


黃燕萍;許中川;
頁: 219-237
日期: 2007/10
卷期: 14(專)
關鍵字: 資料探勘;分群演算法;樣板探勘;時間序列分析;
Keywords: Data mining;Cluster analysis;Pattern discovery;Time series analysis;
摘要: 資料探勘是從大量資料中擷取隱藏、未知與潛在,但具有實用性的資訊分析方法。在資料探勘領域中,知識探勘的相關研究已有長足的進步。時間序列資料,包含大量未知與潛在的資訊。財務類型的資料庫中,通常存有大量的時間序列資料。過去時間序列相關研究以迴歸分析為主,傳...

引用     導入Endnote
陳安斌;許育嘉;
頁: 139-165
日期: 2004/01
卷期: 11(1)
關鍵字: 投資決策;小波轉換;神經網路;時間序列;股市預測;
Keywords: Investment Decision;Wavelet Transform;Neural Network;Time Series;Stock Forecasting;
摘要: 傳統時間序列的分析,通常都植基於機率與統計學,並假設資料的性質是定性(stationary)和線性(linear)的。但是當系統動態呈現高度非線性並伴隨著非定性(non-stationary)時,這些傳統模型的適用性及準確性可能無法滿足研究的需求。因此本研究提出了『小波神經網路多尺度解...

引用     導入Endnote