檢索結果(共3筆)


陳郁晴;李俊賢;
頁: 451-482
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標特徵挑選;人工神經網路;球型複數模糊集;球型複數神經模糊系統;混合式機器學習;
Keywords: multi-target feature selection;artificial neural networks (ANN);sphere complex fuzzy sets (SCFS);sphere complex neuro-fuzzy system (SCNFS);hybrid machine learning algorithm;
摘要: 時間序列資料的變化有著眾多變因,在預測上一直是具有挑戰性的問題和研究。最常應用於股市上的股價變化,從時間的推移中找出股票之間的關係,因此本篇設計一多目標時間序列預測模型,應用於股價預測。模型包含兩種模型架構,人工神經網路(Artificial nural networks; A...

引用     導入Endnote
許敦盛;李俊賢;
頁: 483-511
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標預測;球型複數模糊集;卷積神經網路;模糊推論系統;複合式機器學習演算法;
Keywords: multi-target prediction;sphere complex fuzzy sets;convolution neural networks;fuzzy inference system;hybrid learning;
摘要: 本研究針對時間序列提出多目標預測模型,結合卷積神經網路(Convolutional neural networks; CNN)與球型複數模糊神經系統(Sphere complex neural fuzzy system; SCNFS)。球型複數模糊集(Sphere complex fuzzy sets; SCFSs)可產生複數型態的歸屬程度,使SCNFS能根據...

引用     導入Endnote
陳振東;謝政翰;
頁: 153-177
日期: 2019/04
卷期: 26(2)
關鍵字: 金融科技;股價漲跌預測;機器學習演算法;模糊推論預測系統;
Keywords: FinTech;stock price forecasting;machine learning;fuzzy inference forecasting system;
摘要: 近年來,利用智慧數據分析方法以預測股價乃是金融科技(Financial Technology; FinTech)領域的重要議題。然而,有許多的技術指標以及人為主觀因素會影響股價的漲跌預測,因此必須有效掌握重要的影響指標,才能提高股價漲跌預測的正確率。為此,本研究透過技術指標的篩選...

引用     導入Endnote