檢索結果(共4筆)


廖文忠;許中川;
頁: 185-216
日期: 2012/01
卷期: 19(1)
關鍵字: 交易型資料;自組映射圖;概念階層;交易型資料距離函數;概念樹;
Keywords: transactional data;self-organizing map;concept hierarchy;distance function on transactions;concept tree;
摘要: 在許多應用領域,交易紀錄反映個人行為上的偏好或習慣,若將交易紀錄適當分群,即可將不同行為類型的個人分到不同群組。交易型資料通常有概念階層伴隨,概念階層反映所有可能交易項目之間的相關性,然而,概念階層卻被大多數的分群演算法忽略,因此,易將相似度高的交易...

引用     導入Endnote
戴偉勝;許中川;
頁: 1-25
日期: 2010/12
卷期: 17(專)
關鍵字: 資料探勘;資料視覺化;自組映射圖;混合型資料;
Keywords: data mining;data visualization;Self-Organization Map SOM;mixed-type data;
摘要: 現今企業資料庫中,隨處可見大量包含數值型與類別型屬性的高維度混合型資料。這些資料中常隱含有用資訊,因此如何能有效地分析這些資料從而支援決策,儼然是企業經營管理上的一項重要課題。在探勘資料時,視覺化一直是資料分析初始階段中相當重要的一環。自組映射圖能夠...

引用     導入Endnote
黃燕萍;許中川;
頁: 219-237
日期: 2007/10
卷期: 14(專)
關鍵字: 資料探勘;分群演算法;樣板探勘;時間序列分析;
Keywords: Data mining;Cluster analysis;Pattern discovery;Time series analysis;
摘要: 資料探勘是從大量資料中擷取隱藏、未知與潛在,但具有實用性的資訊分析方法。在資料探勘領域中,知識探勘的相關研究已有長足的進步。時間序列資料,包含大量未知與潛在的資訊。財務類型的資料庫中,通常存有大量的時間序列資料。過去時間序列相關研究以迴歸分析為主,傳...

引用     導入Endnote
許中川;
頁: 61-84
日期: 2004/04
卷期: 11(2)
關鍵字: 自組映射圖;資料探勘;概念階層;類神經網路;群集分析;
Keywords: self-organizing maps;data mining;concept hierarchy;neural networks;cluster analysis;
摘要: 自組映射圖是一種非監督式學習類神經網路,可以將高維度資料投射到低維度空間,並以視覺化方式呈現,反映高維度資料之間的相似度。自組映射圖應用廣泛,包括工程方面及商業方面,例如圖紋辨識、語音辨識、監督處理及流程控制、文件地圖及消費者資料分析等。然而,傳統自...

引用     導入Endnote