檢索結果(共2筆)


葉怡成;陳重志;黃冠傑;
頁: 135-154
日期: 2008/04
卷期: 15(2)
關鍵字: 半徑基神經網路;監督式學習;核函數;分類;
Keywords: Radial basis function network;supervised learning;kernel function;classification;
摘要: 徑向基底函數網路(RBFN)常用於分類問題,它的核有形心與半徑二種參數,這二種參數可用監督式或無監督式學習來決定。但它有一個缺點是視所有自變數有同等地位,故分類邊界是圓形,但事實上每一個自變數對分類的影響力不同,分類邊界是應該是橢圓形較合理。為克服此一缺點...

引用     導入Endnote
施東河;王勝助;
頁: 123-142
日期: 2001/01
卷期: 07(2)
關鍵字: Black-Scholes模式;類神經模糊;避險部位;
Keywords: Black-Scholes Model;NeuroFuzzy tech;hedging position;
摘要: 認購權證是選擇權的一種,提供投資人套利、避險等多樣化選擇。傳統選擇權訂價模式為一複雜之理論,訂價模式有許多限制,與實務上差距有待克服,因此本研究嘗試使用類神經網路建立認購權證評價模式。為避免差異,以Black-Scholes模式中,五項影響權證價格之因子為輸入變數...

引用     導入Endnote