檢索結果(共8筆)


蕭國倫;劉柏辰;蔡泊均;
頁: 177-207
日期: 2024/04
卷期: 31(2)
關鍵字: 股票預測;深度學習;時間卷積網路(TCN);長短期記憶(LSTM);
Keywords: Stock prediction;Deep learning;Temporal Convolutional Network (TCN);Long Short-Term Memory(LSTM);
摘要: 股價預測一直是一個很棘手的問題,由於許多因素都會影響股價,因此簡單的模型無法準確預測。但添加太多的特徵將增加模型的複雜度,若能找到關鍵的特徵,模型的準確性將會更好。在股票預測領域中,許多使用長短期記憶(Long Short-Term Memory, LSTM)的研究顯示了良好的結...

引用     導入Endnote
陳郁晴;李俊賢;
頁: 451-482
日期: 2019/10
卷期: 26(4)
關鍵字: 多目標特徵挑選;人工神經網路;球型複數模糊集;球型複數神經模糊系統;混合式機器學習;
Keywords: multi-target feature selection;artificial neural networks (ANN);sphere complex fuzzy sets (SCFS);sphere complex neuro-fuzzy system (SCNFS);hybrid machine learning algorithm;
摘要: 時間序列資料的變化有著眾多變因,在預測上一直是具有挑戰性的問題和研究。最常應用於股市上的股價變化,從時間的推移中找出股票之間的關係,因此本篇設計一多目標時間序列預測模型,應用於股價預測。模型包含兩種模型架構,人工神經網路(Artificial nural networks; A...

引用     導入Endnote
王慶豐;李俊賢;
頁: 413-450
日期: 2019/10
卷期: 26(4)
關鍵字: 複數模糊類神經;複數模糊集;特徵選取;粒子群最佳化演算法;遞迴最小平方法;
Keywords: complex neuro-fuzzy;complex fuzzy set;feature selection;particle swarm optimization;recursive least squares estimator;
摘要: 面對現今的國際化環境,投資已成為許多企業與人們的獲利方式,股票為此領域相當普遍的交易模式,但股價波動所牽涉層面廣泛,固然難以估計與預測,人工智慧中的深度學習即為當今預測的最佳工具之一。本研究提出一種新形態之複數模糊類神經分類模型(Complex Neuro-Fuzzy ...

引用     導入Endnote
郝沛毅;歐仁彬;黃天受;林振穎;吳建生;
頁: 363-395
日期: 2018/10
卷期: 25(4)
關鍵字: 股價預測;情緒分析;潛在狄利克雷分配;文字探勘;模糊理論;支持向量機;
Keywords: stock trend prediction;sentiment analysis;latent dirichlet allocation;text mining;fuzzy theory;support vector machine;
摘要: 能夠成功預測股票漲跌趨勢明顯地有許多好處,根據效率市場假設,公司股票的價值是由當前所有可用的信息給定。當分析師、投資者和機構交易者評估當前股價時,新聞在股價估值過程中發揮重要作用。事實上,金融新聞刊載有關於公司基本面的訊息,和影響市場參與者期望的質化...

引用     導入Endnote
邱登裕;徐廣銘;
頁: 73-96
日期: 2008/01
卷期: 15(1)
關鍵字: 決策模式;遺傳演算法;法則式類神經網路;倒傳遞類神經網路;
Keywords: Decision model;genetic algorithm;rule-based neural network;back-propagation neural network;
摘要: 方法是結合遺傳演算法與法則式類神經網路,克服利用類神經網路進行財務預測時,其缺乏解釋能力及無法在類神經網路模組中加入專家知識的兩大缺點,而提出一個具有解釋能力的決策模式。期望能透過決策模式的解釋能力讓預測結果能更加取信投資人,並協助投資人進行股市投資...

引用     導入Endnote
陳明琪;林逾先;郭人介;
頁: 153-178
日期: 2008/01
卷期: 15(1)
關鍵字: 蟻群最佳化;KD指標;成交量;20日移動平均線;
Keywords: Ant colony optimization;KD technical indicators;stocks trading volume;20-day moving average;
摘要: 本研究的主要目的是運用蟻群最佳化演算法,針對台灣股票市場建構一個理性的投資決策系統,探討ACO系統最適化參數及其在股市投資決策上之投資績效,並研究系統參數變動對投資績效之影響。模型中以股價、20日移動平均線、KD線與成交量等技術分析指標為判斷因子,根據蟻群最...

引用     導入Endnote
吳榮訓;廖高賢;
頁: 111-138
日期: 2007/04
卷期: 14(2)
關鍵字: 技術分析;基因程式規劃;價量關係;機器學習;
Keywords: Technical Analysis;Genetic Programming;Price-and-Volume Relationship;Machine Learning;
摘要: 預測股票走勢的方法有基本分析及技術分析兩類,技術分析是頗受歡迎的一種分析方式,主要是技術分析在判讀上並不一定需要有受過財經教育的專業能力,一般投資人均可以使用技術分析來預測股價走勢。本研究主要目的是使用技術分析中的價量關係為預測變數,並使用十分鐘為一...

引用     導入Endnote
黃金生 ; 施東河; 劉建利;
頁: 63-80
日期: 1996/06
卷期: 03(1)
關鍵字: 類神經網路; 股票風險溢酬; 套利定價理論; 一般化自迴歸條件異質變異數;;
Keywords: Artifical neural network; Stock risk premiums; Arbitrage pricing theory; GARCH;;
摘要: 本研究嘗試以類神經網路及GARCH模型來預測台灣人壽保險業股票之風險溢酬。基於Ross(1976)的套利定價理論,本研究的預測模型擴充原Chen, Roll and Ross(1986)及Mei and Saunders(1994)之 財務預測模型,並涵蓋台灣保險業市場特徵及政治環境變數。本研究經由類神經網路模型...

引用     導入Endnote